Найдите наибольшее целое число,которое является решением системы неравенств:
{3 - 5(2x + 1) > 7x - 2(x + 1)
{6(1 + x) + 2 > 3(1 - x) + 7x
{3 - 10x - 5 > 7x - 2x -2
{6 +6x + 2 > 3 -3 x + 7x
{ - 10x -5x > 2 -2
{ 6x -4x > 3 -8
{ - 15x > 0
{ 2x > -5
{ x < 0
{ x > -2,5
х принадлежит (-2,5;0)
Все целые числа решения системы неравенств -2;-1;0
Максимальное целое число - 0
х належить (-2,5;0)
Всі цілі числа рішення системи нерівностей -2;-1;0
Максимальне ціле число - 0
№ 1.
Если перед скобками стоит знак минус, то знаки в скобках меняются на противоположные.
1) 5(a - b + c) = 5a - 5b + 5c
5(а - b + c) = 5a - 5b + 5c - тождественно равные выражения;
2) -2(х - 4) = -2х + 8
-2(х - 4) ≠ -2х - 8 - не являются тождественно равными выражениями;
3) (5а - 4) - (2а - 7) = 5а - 4 - 2а + 7 = (5а - 2а) + (7 - 4) = 3а + 3
(5а - 4) - (2а - 7) ≠ 3а - 11 - не являются тождественно равными выражениями.
№ 2.
-12а + (7 - 2а) = -12а + 7 - 2а = (-12а - 2а) + 7 = -14а + 7.
№ 3.
Пусть х - первоначальная цена товара (100%), тогда
х + 0,2х = 1,2х - цена товара после увеличения на 20%
1,2х - 0,2 · 1,2х = 1,2х - 0,24х = 0,96х - цена после снижения на 20%
х - 0,96х = 0,04х - на столь снизилась цена по сравнению с первоначальной
0,04 · 100 = 4% - на столько процентов снизилась начальная цена
ответ: снизилась на 4%.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите произведение корней уравнения: а) x³ + 7x² - x - 7 = 0 б) 3x² + 4x - 12 = x³ в) x³ + 5x² - 4x - 20 = 0 г) 4x³ + 49x = 14x²
x²(x+7) - (x+7)=0
(x+7)(x²-1)=0
(x+7)(x-1)(x+1)=0
произведение равно нулю, если один из множителей равен нулю
x+7=0 ⇒ x=-7
x-1=0 ⇒ x=1
x+1=0 ⇒ x=-1
произведение корней 7
3x² + 4x - 12 = x³
x²(3-x) - 4(-x+3)=0
(3-x)(x²-4)=0
(3-x)(x-2)(x+2)=0
также приравниваем скобки к нулю, и получаем корни
x=3, x=2, x=-2
произведение -12
x³ + 5x² - 4x - 20 = 0
x²(x+5) - 4(x+5)=0
(x+5)(x²-4)=0
(x+5)(x+2)(x-2)=0
корни x=-5, x=-2, x=2
произведение 20
4x³ + 49x = 14x²
x(4x²+49-14x)=0
есть по крайней мере один корень х=0, поэтому произведение всех корней все-равно будет 0