petrosyan35
?>

Значения аргумента при которых функция принимает у=-0, 5х-3

Алгебра

Ответы

Stryapunina
Нужна таблица там напиши y , x . х можешь взять за любое число например 1 и -2
у=-5*1-3. у=-5*-2-3
у=-8 у=7
Потом возьми другое число , и у тебя будут уже точки 2 и ты сможешь нарисовать график
Annabill1987

В решении.

Объяснение:

Решить неравенство:

1) 2х + 5 > 7x - 10

2x - 7x > -10 - 5

-5x > - 15

5x < 15     знак неравенства меняется при делении на минус

x < 15/5

x < 3;

Решение неравенства: х∈(-∞; 3).

Неравенство строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.

2) 2(3х + 7) - 8(х + 3) <= 0

6x + 14 - 8x - 24 <= 0

-2x - 10 <= 0

-2x <= 10

2x >= -10     знак неравенства меняется при делении на минус

x >= -5;

Решение неравенства: х∈[-5; +∞).

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

3) (х + 3)/4 - х/2 >= 3

Умножить все части неравенства на 4, чтобы избавиться от дроби:

х + 3 - 2х >= 12

-x >= 12 - 3

-x >= 9

x <= -9       знак неравенства меняется при делении на минус

Решение неравенства: х∈(-∞; -9].

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

Решить систему неравенств:

1) 3 - х <= 5

   4x - 2 < 8

-x <= 5 - 3

4x < 8 + 2

-x <= 2

4x < 10

x >= -2      знак неравенства меняется при делении на минус

x < 2,5

Решение первого неравенства: х∈[-2; +∞);

Решение второго неравенства: х∈(-∞; 2,5).

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, -2, 0, 2,5, + бесконечность.  

х∈[-2; +∞) - штриховка от -2 вправо до + бесконечности, кружок у -2 закрашенный.  

х∈(-∞; 2,5) - штриховка от - бесконечности вправо до 2,5.

Пересечение х∈[-2; 2,5) (двойная штриховка), это и есть решение системы неравенств.

2) 2(х + 3) - 3(х - 2) > 0

   2x + 3(2x - 3) <= 7

2x + 6 - 3x + 6 > 0

2x + 6x - 9 <= 7

-x + 12 > 0

8x - 9 <= 7

-x > -12

8x <= 16

x < 12       знак неравенства меняется при делении на минус

x <= 2

Решение первого неравенства: х∈(-∞; 12);

Решение второго неравенства: х∈(-∞; 2].  

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, 0, 2, 12.  

х∈(-∞; 12) - штриховка от - бесконечности  вправо до 12.  

х∈(-∞; 2] - штриховка от - бесконечности вправо до 2, кружок у 2 закрашенный.

Пересечение х(-∞; 2] (двойная штриховка), это и есть решение системы неравенств.  

anazarov80

В решении.

Объяснение:

Решить неравенство:

1) 2х + 5 > 7x - 10

2x - 7x > -10 - 5

-5x > - 15

5x < 15     знак неравенства меняется при делении на минус

x < 15/5

x < 3;

Решение неравенства: х∈(-∞; 3).

Неравенство строгое, скобка круглая, а знаки бесконечности всегда с круглой скобкой.

2) 2(3х + 7) - 8(х + 3) <= 0

6x + 14 - 8x - 24 <= 0

-2x - 10 <= 0

-2x <= 10

2x >= -10     знак неравенства меняется при делении на минус

x >= -5;

Решение неравенства: х∈[-5; +∞).

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

3) (х + 3)/4 - х/2 >= 3

Умножить все части неравенства на 4, чтобы избавиться от дроби:

х + 3 - 2х >= 12

-x >= 12 - 3

-x >= 9

x <= -9       знак неравенства меняется при делении на минус

Решение неравенства: х∈(-∞; -9].

Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.

Решить систему неравенств:

1) 3 - х <= 5

   4x - 2 < 8

-x <= 5 - 3

4x < 8 + 2

-x <= 2

4x < 10

x >= -2      знак неравенства меняется при делении на минус

x < 2,5

Решение первого неравенства: х∈[-2; +∞);

Решение второго неравенства: х∈(-∞; 2,5).

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, -2, 0, 2,5, + бесконечность.  

х∈[-2; +∞) - штриховка от -2 вправо до + бесконечности, кружок у -2 закрашенный.  

х∈(-∞; 2,5) - штриховка от - бесконечности вправо до 2,5.

Пересечение х∈[-2; 2,5) (двойная штриховка), это и есть решение системы неравенств.

2) 2(х + 3) - 3(х - 2) > 0

   2x + 3(2x - 3) <= 7

2x + 6 - 3x + 6 > 0

2x + 6x - 9 <= 7

-x + 12 > 0

8x - 9 <= 7

-x > -12

8x <= 16

x < 12       знак неравенства меняется при делении на минус

x <= 2

Решение первого неравенства: х∈(-∞; 12);

Решение второго неравенства: х∈(-∞; 2].  

Теперь нужно на числовой оси отметить интервалы решений двух неравенств и найти пересечение решений, то есть, такое решение, которое подходит двум неравенствам.  

Чертим числовую ось, отмечаем значения - бесконечность, 0, 2, 12.  

х∈(-∞; 12) - штриховка от - бесконечности  вправо до 12.  

х∈(-∞; 2] - штриховка от - бесконечности вправо до 2, кружок у 2 закрашенный.

Пересечение х(-∞; 2] (двойная штриховка), это и есть решение системы неравенств.  

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Значения аргумента при которых функция принимает у=-0, 5х-3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

hachatryanlilit1983
pozhidaevgv
mnn99
Fedorovich_Aleksandrovich685
kuchino09
vikka30
Штакина1568
Елена Надыч524
leonidbaryshev19623
grebish2002
korolev-comitet8825
Irina_Chernyaev532
twisty20075004
zuzman601
tsypant