Вычтем из первого уравнения системы второе:
Если , то в силу того, что произведение равно нолю, . И, подставляя это, например, во второе уравнение, имеем:
Значит, чтобы решений было бесконечно много, нужно чтобы или же . При этом значении переменная может быть любым числом. И каждому значению переменной соответствует свое значение переменной .
Действительно, в этом случае первое и второе уравнение системы будут совпадать с точностью до умножения на два:
Задача решена!
ответ: при a = - 4 .1)10 (км/час) - скорость на велосипеде.
2)8 (см) - длина основания;
10 (см) - длина боковой стороны.
Объяснение:
1. Турист преодолел расстояние в 29 км. 2 часа он ехал на велосипеде,
затем 3 часа шёл пешком. Скорость на велосипеде больше скорости
пешком на 7 км. Найти скорость движения на велосипеде.
х - скорость пешком
х+7 - скорость на велосипеде
3*х - путь пешком
(х+7)*2 - путь на велосипеде
По условию задачи весь путь 29 км, уравнение:
3х+2(х+7)=29
3х+2х+14=29
5х=29-14
5х=15
х=15/5
х=3 (км/час) - скорость пешком
3+7=10 (км/час) - скорость на велосипеде.
2 Периметр равнобедренного треугольника 28 см. Боковая сторона
на 2 см больше основания . Найти стороны РАВНОБЕДРЕННОГО
треугольника.
х - длина основания
х+2 - длина боковой стороны
Периметр треугольника - это сумма длин всех сторон треугольника. Так как треугольник равнобедренный, в нём боковые стороны равны.
По условию задачи периметр треугольника 28 см, уравнение:
х+2(х+2)=28
х+2х+4=28
3х=28-4
3х=24
х=24/3
х=8 (см) - длина основания
8+2=10 (см) - длина боковой стороны.
Поделитесь своими знаниями, ответьте на вопрос:
1) если первую цифру четырёхзначного числа, являющегося полным квадратом, уменьшить на 3, а последнюю увеличить на 3, то получится также полный квадрат. найдите это число. 1) 1521; 2) 7961; 3) 4761; 4) 6084.