Yelena_Gennadevna
?>

Сумма первых десяти членов арифметической прогрессии равна 95, а сумма следующих десяти равна 295 .найти сумму членов этой прогрессии с 21-ого по 30-ый член включительно.

Алгебра

Ответы

alenih13
Составим систему:
95=5 (21a+9d) откуда 2а1+9д=19
и аналогично, выразив а21 через а1
2а1+49d=59
умножаем первое уравнение на -1
получаем -2а1-9d=-19
2а1+49d=59
складываете и узнаете разность прогрессии. теперь д подставьте в любое из первоначальных уравнений - узнаете первый член прогрессии.
дальше уже все пойдет замечательно. найдете а21 . формула суммы 10 членов. где в роли первого 21-
hobpack

Чтобы найти вероятность, нужно количество благоприятных событий разделить на количество всех возможных событий.

Игральный кубик имеет 6 граней, значит при его бросании может выпасть либо 1, либо 2, либо 3, либо 4, либо 5, либо 6 - то есть количество всех возможных событий = 6.

По условию нам нужны только четные числа. В диапазоне от 1 до 6 всего 3 четных числа - 2, 4, 6, значит, количество благоприятных событий = 3.

Итак, количество благоприятных событий - 3, общее количество всех возможных событий - 6.

В числитель записываем благоприятные события (3), в знаменатель - все возможные события (6).

Найдем вероятность.

\displaystyle \frac{3}{6}=\frac{1}{2}=0,5 - вероятность того, что при бросании кубика Ире выпадет четное число очков.

ответ: вероятность равна 0,5.

Vladimirovich351

Два натуральных числа 16; 24.

Объяснение:

Найти два натуральных числа по заданным условиям.

Пусть первое число равно x, а второе равно y.

Тогда сумма их квадратов: x² + y² = 832,

а их произведение xy = 384.

Чтобы найти эти числа, решим систему уравнений.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 . \end{cases}

Умножим обе части второго уравнения системы на 2.

\displaystyle \begin{cases} x^2 + y^2 = 832 \\ xy=384 \;\;|\cdot 2 \end{cases}; \;\;\; \; \displaystyle \begin{cases} x^2 + y^2 = 832 \\ 2xy=768 \end{cases}

Сложим оба уравнения системы:

\displaystyle +\begin{cases}x^2 + y^2 = 832\\2xy=768 \end{cases} \\\displaystyle \overline{x^2 +2xy+ y^2 = 1600}

Свернем левую часть уравнения по формуле квадрата суммы двух выражений:  

\displaystyle (x+y)^2 = 40^{2}

Получим следующую систему уравнений:

\displaystyle \begin{cases} (x+y)^2 = 40^{2} \\ xy=384 \end{cases}

Извлечем квадратный корень из обеих частей первого уравнения.

С учетом того, что нам даны натуральные числа, получим следующую систему уравнений:

\displaystyle \begin{cases} x+y = 40 \\ xy=384 \end{cases}

Выразим переменную y через x в первом уравнении и подставим полученное выражение во второе уравнение.

\displaystyle \begin{cases} y = 40 -x\\ x(40-x)=384 \end{cases};

\displaystyle \begin{cases} y = 40 -x\\ 40x -x^2=384 \end{cases}

Решим второе уравнение системы.

\displaystyle x^2 -40x +384 = 0;\\\displaystyle D = b^{2} - 4ac \\D= 40^{2} -4\cdot 40 \cdot 384 =1600-1536=64=8^2;\\\\\displaystyle x_{1,2} =\frac{-b\pm\sqrt{D} }{2a};\\\displaystyle x_{1} =\frac{40-8}{2}=16;\\\displaystyle x_{2} =\frac{40+8}{2}=24.

Тогда

\displaystyle \begin{cases} x_{1}=16\\y_{1} = 40-16 \end{cases};\;\;\;\displaystyle \begin{cases} x_{1}=16\\y_{1} = 24 \end{cases};\\\\\displaystyle \begin{cases} x_{2}=24\\y_{2} = 40-24 \end{cases};\;\;\;\displaystyle \begin{cases} x_{2}=24\\y_{2}=16 \end{cases}

Заданные натуральные числа 16 и 24.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сумма первых десяти членов арифметической прогрессии равна 95, а сумма следующих десяти равна 295 .найти сумму членов этой прогрессии с 21-ого по 30-ый член включительно.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

glebshramko
papushinrv4985
taanaami75
Шеина
gav973
generallor3
struev2003260
Popova-Erikhovich
kartyshkinaaa
Шапкина1531
ЕВгений_денис643
Вайнер
omraleva
Алёна Геннадьевна98
Ivanovich_Kostik898