1)
а) Д= 25+96=121
x1= (-5+11)/2=3
х2= (-5-11)/2=-13
б) Д= 361+168=529
х1= (19+23)/6=7
х2=(19-23)/6= 4/6
2)a) x^2 -14x +49 = (x-7)^2
б) x^2 + 5x -6 = (x+5)^2 -5x -31
в)
3)x^2 -4x +31>0
Д=16-4*31 < 0 => нету пересечения с осью ox, т.к. ветви вверх, то всегда >0
б) 9x^2 +24x +16
Д= 576-576=0 => 1 т. пересечения с осью ox, ветви вверх => >=0
5) 4x^2 -x = x(4x-1)
б) x^2 +7x+10
Д=49-40=9
x1= -7+3/8= -1/2
x2= -5/4
x^2+7x+10=(x+1/2)(x+5/4)
В) 5x^2 - 7x +2
Д= 49-40=9
x1 = 7+3/10=1
x2= 7-3/10= 4/10=0,4
5x^2 - 7x +2 = 5(x-1)(x-0,4) про 5 не уверен
Г) -2x^2-9x-9=2x^2 + 9x +9
Д=81-72=9
x1= -9-3/4=-3
x2=-9+3/4= -6/4
2x^2 + 9x + 9 = 2(x+3)(x+6/4) про 2 не уверен :C
По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 20; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
Орел выпадает ровно 20 раз (k = 20)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(20! * 2!) * (1/2)^20 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
Поделитесь своими знаниями, ответьте на вопрос:
Нужно подготовить сообщение о жизни пифагора и его школе. .
Философия Древней Греции, в своей основе, представляла учение о рациональном осмыслении существования мира. В те времена, никто не сомневался в божественном происхождении всего сущего, но учения о том, как, по какому принципу, создана окружающая действительность, оставили заметный след в науке и культуре Западного мира, ставших основой принципов и методов научного познания вселенной.
Пифагор Самосский - загадочная, но достоверно существовавшая, личность. Являясь религиозным философом - идеалистом, он создал тайное учение, записи о котором вести запрещалось, поэтому до нас не дошло ни одного трактата самого Пифагора. О достижениях Пифагора и Пифагорейской школы, известно из свидетельств античных авторов, появившихся после 3 века до н. э.
Известно, что Пифагор родился, приблизительно, в 750 г. до н. э . в Самосе (или Сидоне). В 18 лет он покинул Грецию и, прожив в Египте 22 года, постиг тайные учения египетских мудрецов и магов, потом, в плену в Вавилоне, в течение 12-и лет, продолжал общение с членами магических тайных обществ.
В 56 лет Пифагор вернулся на родину уже состоявшимся философом, - кстати, Пифагор, первым из греческих мудрецов, назвал себя философом - любителем мудрости, - и создал свою школу тайного учения.
Девизом Пифагорейской школы можно назвать изречение "Цифры правят миром". Учение Пифагора делится на две части : научный подход к познанию мира и религиозно - мистические постулаты образа жизни. Второй частью предписывались нравственное и физическое очищение, как средство достижения идеального существования, в ней содержались сведения о круговороте человеческой жизни, морально - этические общечеловеческие законы.
Первая часть, тайное учение, была уделом посвященных. В ней содержались принципы построения вселенной и всего сущего. Пифагор считал, что миром правят числа, и, что познание мира - это познание чисел, им управляющих.
Пифагорейская школа выдвинула гипотезу о количественной закономерности развития мира мира, что стало основой для развития точных наук.
В Древней Греции, синонимом красоты была гармония. А философия включала в себя не только мудрые размышления о сущем, но и науку, искусства и спорт. Пифагорейцы искали математические основы гармонии, и открыли числовые отношения (пропорции) во всех сферах человеческой деятельности. Платон писал: "Математика выявляет порядок, симметрию и определённость, а это – важнейшие виды прекрасного."
Благодаря поиску гармонии и открытию пропорций, Пифагором была открыта математическая закономерность музыкального звучания - Теория музыки. Это были бесценные опыты доказательства связи физического явления (звук) с математическими законами.
Пифагор использовал три средние величины (а, может, и был их первооткрывателем): среднее арифметическое, геометрическое и гармоническое.
Он, первым, доказал теорему " В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов", носящую его имя.
Пифагор занимался изучением четных и нечетных чисел, применяя, впервые, дедуктивный метод исследования. (от частного - к общему). Одним из первых объектов изучения, в современной Теории чисел, была теория четных и нечетных чисел.
Также, Пифагор доказал теорему о сумме внутренних углов треугольника, изобрел (по некоторым источникам), таблицу умножения в современном виде, нашел геометрический решения квадратных уравнений, разработал правила решения задач.
Поскольку, в Пифагорейской школе, записи были под запретом, и знания передавались от учителя к ученикам устно, то, среди исследователей, есть разногласия по поводу авторства Пифагора в тех или иных исследованиях, проводившихся в рамках его школы. Приписываемые Пифагору открытия, вполне могут быть открытиями его учеников. Кроме того, существует мнение, что все, что было открыто, доказано и разработано школой, являлось интеллектуальной собственностью Пифагора. Несмотря на подобные разногласия. несомненно то, что школа была основана на научных и философских изысканиях Пифагора, в ее основу легли его теории существования вселенной и, все открытия школы имели заданное направление, поэтому, без сомнения, их можно считать открытиями самого великого философа.