Klochkov malakhov1974
?>

Докажите, что функция f(x)=x^2+cosx является чётной

Алгебра

Ответы

Романенко
F(-x)=(-x)^2+cos(-x)=x^2+cosx
косинус всегда плюс
mary---jane49
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3
partners
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите, что функция f(x)=x^2+cosx является чётной
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

pbttehnology
xsmall1
vbnm100584
gorbunova188
КалюкМарасанов1026
iraimironova
tatianamatsimoh
jakushkinn
mila-vsv
bogatskayaa
evg-martenyuk
mrvasilev2012
pavlova7771960
Исаченко Тераски1181
1-4x-(2+(5-x)) подобные слагаемые !
Korobeinikov-Yulich23