Во-первых, эти два примера - одинаковые. Вы просто поменяли а на х и cos a = -1/√3 = -√3/3 Отсюда cos^2 a = 1/3 Во-вторых, есть такое выражение для произведения синусов sin x*sin x = 1/2*(cos(x-y) - cos(x+y)) Подставляем cos 8a + cos 6a + 2sin 5a*sin 3a = cos 8a+cos 6a+2/2(cos 2a-cos 8a) = = cos 8a + cos 6a + cos 2a - cos 8a = cos 2a + cos 6a Еще есть выражение для косинуса тройного аргумента cos 3x = cos(x+2x) = cos x*cos 2x - sin x*sin 2x = = cos x*cos 2x - sin x*2sin x*cos x = cos x*(2cos^2 x - 1 - 2sin^2 x) = = cos x*(2cos^2 x - 1 - 2 + 2cos^2 x) = cos x*(4cos^2 x - 3) Подставляем cos 2a + cos 6a = cos 2a + cos 2a*(4cos^2 (2a) - 3) = = cos 2a*(4cos^2 (2a) - 2) = 2cos 2a*(2cos^2 2a - 1) = = 2*(2cos^2 a - 1)(2(2cos^2 a - 1)^2 - 1) = = 2*(2/3 - 1)(2*(2/3 - 1)^2 - 1) = 2(-1/3)(2*(1/3)^2 - 1) = = 2(-1/3)(2*1/9 - 1) = 2(-1/3)(-7/9) = 14/27
v89167233402
02.03.2022
Прямая однозначно определяется точкой, через которую она проходит, и коэффициентом наклона. Нам ничего неизвестно о втором. Ищем.
Коэффициент наклона касательной к графику какой-нибудь функции - это не что иное, как производная функции в точке.
Нам известна координата х той точки на графике , в которой проведена касательная. Это точки М. Подставим в производную, чтобы найти наклон этой касательной.
Осталось теперь лишь подставить в уравнения прямой, проходящей через точку.
В нашем случае
Наконец, найдем абсциссу точки пересечения нашей касательной с осью ОХ. Прямая пересекает ось ОХ там, где . То есть,
Убили. ответ:
atupicyn754
02.03.2022
1) Метод подстановки, Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.1. Выразить у через х из одного уравнения системы. 2. Подставить полученное выражение вместо у в другое уравнение системы. 3. Решить полученное уравнение относительно х. 4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге. 5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге. 2)Метод алгебраического сложения Знаком вам из курса алгебры 7-го класса, самый легкий 3)Метод введения новых переменных Когда в двух уравнениях системы повторяется что-то, это можно заменить путем введения новой перемнной. 4)графически Построить для каждого уравнения его график и найти точку пересечения, это и будет ответ!
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражения: 1)cos8a+cos6a+2sin5asin3a, если cosa=-1/корень из 3 2)cos6x+cos8x+2sin3x*sin5x, если cosx=-корень из 3/3
Вы просто поменяли а на х и cos a = -1/√3 = -√3/3
Отсюда cos^2 a = 1/3
Во-вторых, есть такое выражение для произведения синусов
sin x*sin x = 1/2*(cos(x-y) - cos(x+y))
Подставляем
cos 8a + cos 6a + 2sin 5a*sin 3a = cos 8a+cos 6a+2/2(cos 2a-cos 8a) =
= cos 8a + cos 6a + cos 2a - cos 8a = cos 2a + cos 6a
Еще есть выражение для косинуса тройного аргумента
cos 3x = cos(x+2x) = cos x*cos 2x - sin x*sin 2x =
= cos x*cos 2x - sin x*2sin x*cos x = cos x*(2cos^2 x - 1 - 2sin^2 x) =
= cos x*(2cos^2 x - 1 - 2 + 2cos^2 x) = cos x*(4cos^2 x - 3)
Подставляем
cos 2a + cos 6a = cos 2a + cos 2a*(4cos^2 (2a) - 3) =
= cos 2a*(4cos^2 (2a) - 2) = 2cos 2a*(2cos^2 2a - 1) =
= 2*(2cos^2 a - 1)(2(2cos^2 a - 1)^2 - 1) =
= 2*(2/3 - 1)(2*(2/3 - 1)^2 - 1) = 2(-1/3)(2*(1/3)^2 - 1) =
= 2(-1/3)(2*1/9 - 1) = 2(-1/3)(-7/9) = 14/27