Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Объяснение:Находим критические точки данной функции.
Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.
у' = (-х^2 + 6х + 7)' = -2x + 6.
-2x + 6 = 0;
2x = 6;
x = 6 / 2 = 3.
Следовательно, точка х = 3 является критической точкой данной функции.
Находим значение второй производной данной функции в точке х = 3.
у'' = (-2x + 6)' = -2.
Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.
Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).
ответ: данная функция убывает на промежутке (3; +∞).
Поделитесь своими знаниями, ответьте на вопрос:
Объяснение:
1. а)
∈{-2,-1} ⇒ y∈{-10,-5} (условие выполняется)
б)
∈{0}, тогда 0<1, но 0<3 ⇒ противоречие
в)
∈{-5, -1}, y∈{-10,-5}
г)
∈{15}, y∈{75}, но y<5 ⇒ противоречие
2. a∈{5,6,7,8,9,10,11,12,13,14,15,16}, b∈{9,10,11,12}
a) a∈{5,6,7,8,9,10,11,12,13,14,15,16}, b∈{9,10,11,12}
б) a∈{5,6,7}, b∈{9,10,11,}, a+b∈{14,15,16}
в) a∈{5,6,7,8,9,10,11,12,13,14,15,16}, b∈{9,10,11,12} a+b∈{14,15,16,17,18}
3. A) a>0
б) a < 0
в) a-8 (всегда) < a + 8 ⇒ противоречие
г) при возведение в квадрат любого числа получится положительное ⇒ когда мы поменяем его на отрицательный после возведения, полученное значение будет < 0. Но при возведение 0^2 = 0 ⇒ a=3 единственное решение.
4. p ∈ {10, 11, 12, 13}
а) если p ∈ {10, 11, 12, 13}(по условию), то выполняется только одно из условий ⇒ противоречие
б) p ∈ {10, 11, 12, 13}
в) значение всех трех дробей должно быть отрицательным чтобы соблюдалось условие, но так как
>0 приходим у противоречию
г) аналогично в
5. а), в)
6. x - а), в), г)
y - б)