Вкладчик положил в банк 10000р под некоторый процент годовых. в конце первого года банк увеличил процент годовых на 5%. под какой процент были положены деньги, если после двух лет хранения денег в банке вкладчик получил 11550р.
Предположим, что изначальный процент x, тогда в конце первого года на счету будет: 10000 * ((100+x)/100) [р] . В конце первого года процент стал x+5, тогда в конце второго года на счету будет: (10000 * ((100+x)/100)) * ((100+x+5)/100) = 11550 [р] Раскрываем скобки и решаем полученное уравнение: (100+x) * (105+x) = 10500 + 205*x + x*x = 11550 x*x + 205*x - 1050 = 0 Дискриминант: D = 205*205 + 4*1050 = 40000+2000+25+4200 = 46225 = 215^2 x1 = (-205 - 215)/2 = -210 (не имеет смысла) x2 = (-205 + 215)/2 = 5 ответ: 5%
mstrshulz
26.12.2021
Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
gav973
26.12.2021
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
В конце первого года процент стал x+5, тогда в конце второго года на счету будет: (10000 * ((100+x)/100)) * ((100+x+5)/100) = 11550 [р]
Раскрываем скобки и решаем полученное уравнение:
(100+x) * (105+x) = 10500 + 205*x + x*x = 11550
x*x + 205*x - 1050 = 0
Дискриминант: D = 205*205 + 4*1050 = 40000+2000+25+4200 = 46225 = 215^2
x1 = (-205 - 215)/2 = -210 (не имеет смысла)
x2 = (-205 + 215)/2 = 5
ответ: 5%