
В решении.
Объяснение:
у = 32/(2 - х)² - (2 + х)²
Область определения - это значения х, при которых функция существует, обозначение D(f) или D(y).
Данная функция существует, если её знаменатель больше нуля (известно, что на ноль делить нельзя, и дробь в этом случае не имеет смысла).
Поэтому вычислить область определения через неравенство:
(2 - х)² - (2 + х)² > 0
Раскрыть скобки:
4 - 4х + х² - (4 + 4х + х²) > 0
4 - 4х + х² - 4 - 4х - х² > 0
-8х > 0
8х < 0
x < 0.
Решение неравенства х∈(-∞; 0).
Область определения функции D(y) = (-∞; 0).
То есть, функция существует при всех значениях х от - бесконечности до х = 0.
III. Формулювання мети і завдань уроку
Формулюємо проблему: як знайти значення виразу
.
де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосування теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.
IV. Актуалізація опорних знань та вмінь
Виконання усних вправ
1. Замініть рівняння рівносильним йому зведеним квадратним рівняння:
а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0
та знайдіть суму і добуток його коренів.
2. Наведіть приклад квадратного рівняння, в якого:
а) один корінь дорівнює нулю, а другий — не дорівнює нулю;
б) обидва корені дорівнюють нулю;
в) немає дійсних коренів;
г) корені — протилежні ірраціональні числа.
3. Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює
Поделитесь своими знаниями, ответьте на вопрос: