Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
Поделитесь своими знаниями, ответьте на вопрос:
Умоляю ! докажите что выражение (2m+n)(2m+n-10)+25 принимает неотрицательные значения при любых значениях переменных
4m^2 + 2mn - 20m + 2mn + n^2 - 10n + 25=(4m^2+4mn+n^2)-10(2m+n)+25=
(2m+n)^2-10(2m+n)+25 = (2m+n+5)^2 >= 0 при любых значениях переменных