Решение на фото: Алгоритм нахождения экстремумов: функции(наибольшее и наименьшее значение функции) •Находим производную функции Приравниваем эту производную к нулю Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль) Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.
petr2077
05.06.2022
ДАНО: S=112 км. Sa>Sv на 48 км за 1 час. Tv-Ta= 7:28 НАЙТИ: Va=? Пишем два уравнения. 1) Vv= Va- 48 - путь за 1 час - это скорость в км/час. Переводим время 7:28 в часы - 7+28/60 = 7 7/15 час. = 112/15 час. 2) S/Vv - S/Va =112/15 - время обгона велосипедиста Приводим к общему знаменателю 2) подставив путь = 112 км. 112*Va - 112*Va +112*48 = Va*(Va-48)*(112/15) V^2 - 48*V = 48*15 = 720 Решаем квадратное уравнение и получаем корни Va= 60 км/час. и -12, которое нам не подходит. Из уравнения 1) Vv = Va-48 = 12 км/час
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение коэффициента a в уравнении ax-17y=7, если известно, что пара чисел (3; 1) являются его решением.
ах - 17у = 7
А(3;1)
Т.к А € а => 3а - 17 = 7
3а = 24
а = 8
ответ: 8