apromovich1
?>

7класс, сократить дроби: а) 7х^4у 49ху^3 б) 8а^2b^3(a+b) 20ab^2(a+b) в) ma^2-m^2a m^2-ma г) 4-d^2 3d+6 д) m^2+2mn+n^2 (m+n)^2 е) х^2+x x^3+1

Алгебра

Ответы

postbox
\frac{7x^4y}{49xy^3}= \frac{x^3}{7y^2}
\frac{8a^2b^3(a+b)}{20ab^2(a+b)} = \frac{2ab}{5}
\frac{ma^2-m^2a}{m^2-ma} = \frac{-ma(m-a)}{m(m-a)} =-a
\frac{4-d^2}{3d+6}= \frac{(2-d)(2+d)}{3(d+2)} = \frac{2-d}{3}
\frac{m^2+2mn+n^2}{(m+n)^2} = \frac{(m+n)^2}{(m+n)^2} =1
\frac{x^2+x}{x^3+1} = \frac{x(x+1)}{(x+1)(x^2-x+1)}= \frac{x}{x^2-x+1}
shyroshka836103

Объяснение:

построим график функции y=(x+2)|xI

1) при х≥0 IxI=x

y=(x+2)x=x²+2x

y=x²+2x

коэффициент при х² положительный ⇒ ветки направлены вверх

y(0)=0;

вершина параболы y=x²+2x в точке х₀=-b/2a=-2/2=-1

y₀=y(x₀)=y(-1)=1-2=-1   (-1;-1)

графиком является часть правой ветки параболы начиная от точки

(0;0)

2)  при х<0

IxI=x

y=(x+2)(-x)=-x²-2x

y=-x²-2x

коэффициент при х² отрицательный  ⇒ ветки направлены вниз

вершина параболы y=-x²-2x в точке х₀=-b/2a=2/(-2)=-1

y₀=y(x₀)=y(-1)=-1+2=1   (-1;1)

графиком является левая ветка параболы и часть правой ветки до точки (0;0)

lim-x²-2x=0

x->0-

в точке (0;0) левая и правая часть графика соединяются

3)

смотрим на чертеж

очевидно, что чтобы уравнение (x+2)|x|=a  имело три корня

прямая y=a должна пересекать график y=(x+2)|x|  в трех точках

это возможно если а будет между 0 и 1

a∈(0;1)


При каких значениях параметра а уравнение (x+2)|x|=a имеет три корня?
И.Д.1065

\dfrac{-\sqrt[3]{4}-\sqrt[3]{2}\pm\sqrt{2\sqrt[3]{2}+\sqrt[3]{4}+40}}{2}

Объяснение:

x = 0 не является корнем уравнения (-729 ≠ 0). Значит, можно поделить на x³:

x^3-33x+6+33\cdot \dfrac{9}{x}-\dfrac{729}{x^3}=0\\x^3-\dfrac{729}{x^3}-33\left(x-\dfrac{9}{x}\right)+6=0

Пусть x-\dfrac{9}{x}=t. Тогда

t^3=x^3-3x^2\cdot\dfrac{9}{x}+3x\cdot\dfrac{81}{x^2}-\dfrac{729}{x^3}=x^3-\dfrac{729}{x^3}-27\left(x-\dfrac{9}{x}\right)\\t^3=x^3-\dfrac{729}{x^3}-27t\\x^3-\dfrac{729}{x^3}=t^3+27t

Выполним замену:

t^3+27t-33t+6=0\\t^3-6t+6=0

Представим t в виде суммы двух действительных чисел: t = b + c. Заметим, что

(b+c)^3=b^3+3b^2c+3bc^2+c^3=b^3+c^3+3bc(b+c)\\t^3=b^3+c^3+3bct\\t^3-3bct-(b^3+c^3)=0

При подстановке t = b + c мы действительно получим 0 (чтобы убедиться в этом, достаточно проделать действия в обратном порядке), то есть t = b + c является корнем такого уравнения. Попробуем найти такие b и c, чтобы при подстановке этих чисел в последнее уравнение коэффициент перед t был равен -6, а свободный коэффициент был равен 6. Так мы получим нужное уравнение, но заодно и найдём его корень:

\displaystyle \left \{ {{-3bc=-6} \atop {-(b^3+c^3)=6}} \right. \left \{ {{bc=2} \atop {b^3+c^3=-6}} \right. \left \{ {{c=\frac{2}{b}} \atop {b^3+\frac{8}{b^3}+6=0}} \right.

Решим второе уравнение. b ≠ 0, иначе это противоречило бы первому уравнению (0 ≠ 2). Домножим на b³ и сделаем замену b³ = z:

z^2+6z+8=0

По теореме Виета \displaystyle \left \{ {{z_1+z_2=-6} \atop {z_1z_2=8}} \right.\Rightarrow z=-4; -2

\displaystyle \left [ {{b^3=-4} \atop {b^3=-2}} \right. \left [ {{b=-\sqrt[3]{4} } \atop {b=-\sqrt[3]{2} }} \right. \Rightarrow \left [ {{c=\dfrac{2}{-\sqrt[3]{4}}} \atop {c=\dfrac{2}{-\sqrt[3]{2}}} \right. \left [ {{c=-\sqrt[3]{2}} \atop {c=-\sqrt[3]{4}}} \right.

В первом случае t=-\sqrt[3]{4}-\sqrt[3]{2}, во втором — t=-\sqrt[3]{2}-\sqrt[3]{4}. Они отличаются только перестановкой слагаемых, поэтому это один и тот же корень. Получаем:

x-\dfrac{9}{x}=-\sqrt[3]{4}-\sqrt[3]{2}\\x^2+(\sqrt[3]{4}+\sqrt[3]{2})x-9=0\\D=(\sqrt[3]{4}+\sqrt[3]{2})^2+4\cdot 9=2\sqrt[3]{2}+\sqrt[3]{4}+40\\x=\dfrac{-\sqrt[3]{4}-\sqrt[3]{2}\pm\sqrt{2\sqrt[3]{2}+\sqrt[3]{4}+40}}{2}

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

7класс, сократить дроби: а) 7х^4у 49ху^3 б) 8а^2b^3(a+b) 20ab^2(a+b) в) ma^2-m^2a m^2-ma г) 4-d^2 3d+6 д) m^2+2mn+n^2 (m+n)^2 е) х^2+x x^3+1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

tsypant
Nikolaevich1534
oleonov
АртакСергеевич1723
Андреевна
vaskravchuck
textildlavas21
asemchenko
Жуков219
i7aster26
eliteclassic308
bestform
potemkin77
Marina281
sergeylive