ответ 1:
Функция возрастает на интервале (-1; +∞)
Убывает на (-∞; -1)
Объяснение 1:
через производную:
f'(x)=4x³+4
приравниваем производную к нулю и ищем корни
4x³+4=0
4x³=-4
x³=-1
x=-1 - корень
отмечаем полученные корни на числовой прямой:
[-1]>ₓ
получаются 2 интервала (слева и справа от -1). Берем пробную точку, например 0 (она находится правее чем -1), подставляем в нашу производную f'(x)=4x³+4
f'(0)=4*0³+4=4
получили положительное число (то есть со знаком +), значит правый промежуток с плюсом.
Теперь берем любую точку левее -1, например -2
f'(-2)=4*(-2)³+4=4*(-8)+4=-28 - отрицательное число, значит левый промежуток с минусом, то есть
[-1]>ₓ
Там где производная отрицательна - функция убывает.
Где производная положительна - функция возрастает.
x=-1 - точка минимума (так как до нее функция убывала, а после нее начала возрастать)
///
ответ 2:
Функция f(x) убывает на всё промежутке х ∈ (-∞; +∞)
Объяснение 2:
f(x) = 8 - 4x - x³
Функция определена при х ∈ (-∞; +∞)
Пусть х₂ > x₁
f(x₁) = 8 - 4x₁ - x₁³
f(x₂) = 8 - 4x₂ - x₂³
f(x₂) - f(x₁) = 8 - 4x₂ - x₂³ - (8 - 4x₁ - x₁³) = -4(x₂ - x₁) - (x₂³ - x₁³)
Поскольку х₂ > x₁ , то (x₂ - x₁) > 0 и (x₂³ - x₁³) > 0, тогда
f(x₂) - f(x₁) < 0 , то есть функция f(x) убывает
на всём промежутке х ∈ (-∞; +∞)
В решении.
Объяснение:
Решить систему уравнений:
1) х - у = 1
х + у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + у
1 + у + у = 3
2у = 3-1
2у = 2
у = 1;
х = 1 + у
х = 1+1
х = 2.
Решение системы уравнений (2; 1).
2) х - 2у = 1
2х + у = 2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + 2у
2(1 + 2у) + у = 2
2 + 4у + у = 2
5у = 2 - 2
5у = 0
у = 0;
х = 1 + 2у
х = 1.
Решение системы уравнений (1; 0).
Проверка путём подстановки вычисленных значений х и у в системы уравнений показала, что данные решения удовлетворяют данным системам уравнений.
Поделитесь своими знаниями, ответьте на вопрос:
2корень из3-х = х-1 (решить уравнение)
(2√(3-x) )^2=(x-1)^2
4*(3-x)=x^2-2x+1
x^2-2x+1-12+4x=0
x^2+2x-11=0
D=4-4*1*(-11)=4+44=48=(4√3)^2; Проверка
x1=(-2-4√3)/2=-1-2√3; 2√(3+1+2√3)=-1-2√3 -14 неверно -15-2√3<0
x2=(-2+4√3)/2=-1+2√3 2√(3+1-2√3)=-1+2√3-1
2√(4-2√3) =-2+2√3
4*(4-2√3) =4-8√3+12 верно
ответ. -1+2√3