Цифры четырехзначного числа, меньшего 5000 и кратного 3, записали в обратном порядке и получили второе четырехзначное число. затем из первого числа вычли второе и получили 909. в ответе укажите какое-нибудь одно такое исходное число.
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
Например 9081, 2781 и т.д.
yna21289
10.09.2022
S V t 1-я лодка х км у + 3 км/ч х/(у +3) ч 2-я лодка 111 - х км у - 3 км/ч (111-х)/(у -3)ч х/(у + 3) = 1,5 ,⇒ х = 1,5(у +3) (111-х)/(у -3) = 1,5,⇒ 111 - х = 1,5(у -3) Сложим эти 2 уравнения почленно получим: 111= 1,5(у +3) + 1,5(у -3) 111 = 1,5у +4,4 + 1,у - 4,5 3у = 111 у = 37(км/ч) - собственная скорость лодки х = 1,5(у +3) = 1,5(37 +3) = 1,5*40 = 60(км) -1-я лодка проплыла до встречи 111 - 60 = 51(км) - проплыла 2-я лодка до встречи.
Анастасия Елена
10.09.2022
P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2:
222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант:
2(d+b)+2=18d+b=8
Например 9081, 2781 и т.д.