Маринова
?>

10-11 ! 1)найдите площадь фигуры ограниченной графиком функции y=f(x) и осью ox f(x)=6+x-x^2 2)найдите площадь фигуры, ограниченной заданными линиями а)y=x^2-x , y=3x б)y=4/x^2 , y= -x-1 , x= -1

Алгебра

Ответы

khadisovam9
Вооооооооооооооооооооооооооот
10-11 ! 1)найдите площадь фигуры ограниченной графиком функции y=f(x) и осью ox f(x)=6+x-x^2 2)найди
10-11 ! 1)найдите площадь фигуры ограниченной графиком функции y=f(x) и осью ox f(x)=6+x-x^2 2)найди
10-11 ! 1)найдите площадь фигуры ограниченной графиком функции y=f(x) и осью ox f(x)=6+x-x^2 2)найди
srkushaev
1)
f(x) - функция, графиком которой является парабола ветвями вниз, пересекающая ось Ох в двух точках. Значит, ее площадь фигуры, отсекаемой от параболы осью Ох, нужно рассчитывать как определенный интеграл этой функции от а до b, где а и b - точки, в которых f(x) обращается в нуль, т.е. корни уравнения 6+x-x^2=0. Найдем дискриминант D=1+24=25 и решим уравнение: 
x=(-1 плюс-минус 5)/(-2); х₁=-2; х₂=3. Итак, найдем площадь:
S= \int\limits^3_{-2} {(6+x-x^2)} \, dx =6x+ \frac{1}{2} x^2- \frac{1}{3} x^3|^3_-_2= \\ =(6*3+\frac{1}{2}* 3^2-\frac{1}{3}*3^3 )-(6*(-2)+\frac{1}{2}* 2^2-\frac{1}{3}*(-2)^3 )= \\ =18+4,5-9-(-12+2+ \frac{8}{3} )=18+4,5-9+12-2- \frac{8}{3}=20 \frac{5}{6} 


2)
а)
Сначала найдем точки пересечения графиков указанных функций, для чего решим уравнение 
x^2-x=3x;
 \\ x^2-4x=0; \\ 
x(x-4)=0; \\ 
x_1=0; x_2 =4
Площадь, которую мы должны найти, равняется модулю разности опред. интеграла функции у=х^2-х с пределами в точках 0 и 4 и площади треугольника, образованного прямой у=3х, осью абсцисс и прямой х=4. Катеты этого треугольника равны 4 и 12 (т.к. 4-0=4 и 3*4=12), значит площадь его равна 4*12/2=4*6=24. Найдем интеграл и вычтем из него 24.

\int\limits^4_0 {(x^2-x)} \, dx = \frac{1}{3} x^3- \frac{1}{2} x^2|^4_0=\frac{1}{3} *4^3- \frac{1}{2} *4^2-(\frac{1}{3}* 0^3- \frac{1}{2} *0^2)= \\ = \frac{64}{3} -8=21 \frac{1}{3} -8=13\frac{1}{3} \\ \\ |13\frac{1}{3} -24|=10\frac{2}{3} 

б)
format-l3364
Б) f(x)=4-2x
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2

в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3
yrgenson2011801

Пусть abc - искомое число.

 

Найдем все возможные комбинации цифр a, b и c, такие, что S = a + b + c = 21.

 

Если одна из цифр числа меньше 2, то и S < 2 + 9 + 9 = 21, что не подходит по условию. Таким образом, все цифры числа должны быть больше 2.

 

Последовательно рассмотрев случаи для семи возможных значений a: a = 3,4,5,6,7,8,9, находим соответствующие им b и c.

 

С точностью до перестановки цифр, возможных "уникальных" комбинаций всего 7: (3,9,9), (4,8,9), (5,7,9), (5,8,8), (6,6,9), (6,7,8) и (7,7,7).

 

Комбинации, полученные перестановкой цифр в каждой из этих 7-и комбинаций, представляют различные между собой числа, и также нам подходят. Проделав всевозможные перестановки цифр в каждой тройке, мы найдем все различные n = 28 чисел.

 

Общее количество трехзначных чисел (т.е. чисел 100, 101, 102, 103, ..., 999), как легко подсчитать, будет N = 999 - 100 + 1 = 900. Откуда и получим искомую вероятность p = 28/900 = 7/225 = 0,03(1).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

10-11 ! 1)найдите площадь фигуры ограниченной графиком функции y=f(x) и осью ox f(x)=6+x-x^2 2)найдите площадь фигуры, ограниченной заданными линиями а)y=x^2-x , y=3x б)y=4/x^2 , y= -x-1 , x= -1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

taanaami75
Владимирович_Слабый
papushinrv4985
СмыковаДарья1969
mihalevskayat
utkinslava
Negutsa_Kseniya524
cvetyzelen283
miyulcha8077
galkavik
bagrjashv41
vasilevam
denisov4
shugayzhanna6
alexluu33