Fedorovich309
?>

Решите систему уравнений: 2x+y=5 3x-4y=2 заранее

Алгебра

Ответы

Roman343247
Привет,
решим систему методом сложения
домножим первое уравнение на 4
8х+4у=20
+
3х-4у=2

11х=22
х=2
Теперь найдем у
2*2+у=5
4+у=5
у=1
Chutaeva381
Итак, у нас есть два варианта раскрытия модуля, 2-х и х - 2, запишем условия для каждого из раскрытий: 1) х < 2, значит модуль раскрывается в обратном порядке (2 - х); 2) х ≥ 2, значит модуль раскрывается в прямом порядке (х - 2);

Тогда раскроем модуль для каждого случая:

1) 8 - 4x + 2x = 6 - 3x + 1 ⇔ x = -1; - этот корень подходит (см. в разборе случаев (1))

2) 4x - 8 + 2x = 1 - 6 + 3x ⇔ x = 1; - не подходит (см. в разборе случаев (2))

Таким образом, у нас лишь один корень, являющийся решением - х = -1;
Гарик383
Дано:

∆ ABC,

CK — медиана и биссектриса

Доказать:

∆ ABC — равнобедренный.

Проведем анализ задачи:

На основе каких данных можно утверждать, что треугольник — равнобедренный? Если у него две стороны равны либо два угла равны. Значит, нам нужно доказать либо равенство сторон AC и BC, либо равенство углов A и B. Любое из этих равенств следует из равенства треугольников.

В треугольниках AKC и BKC биссектриса CK образует равные углы ACK и BCK, медиана CK — равные отрезки AK и BK. Сторона CK — общая.

Что мы имеем? Две стороны, но нет угла между ними. Ни к одной из сторон нет двух прилежащих углов. Признаки равенства треугольников применить не можем.

В таком случае придется выполнять дополнительные построения.

На луче CK отложим отрезок KE так, чтобы KE=CK, и точки A и E соединим отрезком. Получили еще один треугольник AKE.

Мы можем доказать, что этот треугольник равен треугольнику BKC (по двум сторонам и углу между ними).

Из равенства этих треугольников следует равенство сторон AE и BC и углов AEK и BCK.

Получается, что в треугольнике ACE имеется два равных угла AEK и ACK. Поэтому он — равнобедренный, откуда легко доказывается и равенство сторон AC и ВС. Осталось записать доказательство.

Доказательство:

На луче CK отложим отрезок KE, KE=CK.

Рассмотрим треугольники AKE и BKC:

1) AK=BK (так как CK — медиана по условию)

2) KE=CK (по построению)

3) ∠AKE=∠BKC (как вертикальные).

Следовательно, ∆ AKE=∆ BKC (по двум сторонам и углу между ними).

Из равенства треугольников следует равенство соответствующих сторон: AE=BC и соответствующих углов: ∠AEK=∠BCK.

По условию, ∠BCK=∠AСK. Поэтому ∠AEK=∠AСK.

Таким образом получили, что в треугольнике ACE два угла равны. Значит, ∆ ACE — равнобедренный с основанием CE (по признаку). Следовательно, его боковые стороны равны: AE=AC.

А поскольку уже доказали, что AE=BC, то и AС=BС. Поэтому ∆ ABC — равнобедренный с основанием AB (по определению).
Докажите что треугольник abc равнобедренный если у него медиана bd является биссектрисой

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему уравнений: 2x+y=5 3x-4y=2 заранее
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

deshkina82
avdushinalizza1
voen-torg
Викторович Попков
Lenok33lenok89
tolyan791
milkiev
stsnab
genya1509
Daniil1945
Shcherbinin KOLIChEVA
martabunova
nastyakrokhina87
Вакуленко
КузменковаЖигулин