ответ: не знаю
Объяснение:
Пошаговое объяснение:
а) Р=4а=4*9=36 см
Обратная задача: периметр квадрата Р=36 см . Чему равна сторона квадрата? a=36/4=9a=36/4=9 см
б) Р=2*(a+b)=2*10=20 см
Обратная задача: периметр прямоугольника Р=20 см, одна из его сторон a=3 см. Чему равна вторая сторона прямоугольника? b=(20/2)-3=7 см
в) Р=4а ⇒ а=Р/4=32/4=8 см
Обратная задача: Сторона квадрата – 8 см. Чему равен периметр? Р=4а=4*8=32 см
г) Р=2*(a+b) ⇒ b=(P/2)-a=14/2-5=7-5=2 см
Обратная задача: стороны прямоугольника – 5 см и 2 см. Найди периметр. Р=2*(a+b)=2*(5+2)=14 см
См. Объяснение
Объяснение:
Определение: функция (у) является чётной (парною), если при изменении знака х, она не меняет своего значения; а если при изменении знака х функция (у) меняет значение, то такая функция называется нечётной (непарною).
№ 1
Дано: f (x) = 6х³ - 7х⁵
Если х = 1, то f (1) = 6· 1³ - 7·1⁵ = 6 - 7 = - 1.
Если х = (-1), то f (-1) = 6· (-1)³ - 7· (-1)⁵ = 6· (-1) - 7· (-1) = -6 + 7 = 1
Вывод: так как при изменении знака х функция f (x) = 6х³ - 7х⁵ изменила своё значение (было -1, а стало +1), то она является нечётной.
ответ: нечётная.
№ 3
Дано: f(x) = √(6 - x²)
Если х = 1, то f (1) = √(6 - 1²) = √5.
Если х = (-1), то f (-1) = √(6 - (-1)²) = √5.
Вывод: так как при изменении знака х функция f (x) = √(6 - x²) не изменила своё значение, то она является чётной.
ответ: чётная.
№ 5
Дано: f (x) = 1/(х³ -2х)
Если х = 1, то f (1) = 1/(1³ -2·1) = 1/(1-2) = 1/(-1) = - 1.
Если х = (-1), то f (-1) = 1/((-1)³ -2· (-1)) = 1/(-1 +2) = 1/1 = 1.
Вывод: так как при изменении знака х функция f (x) = 1/(х³ -2х) изменила своё значение, то она является нечётной.
ответ: нечётная.
Поделитесь своими знаниями, ответьте на вопрос:
Как называется эта функция
ответ: Гипербола
Объяснение: