верно , обратное нет
Объяснение:
пусть р - простое , рассмотрим остатки от деления р на 6 :
p = 6b + q , где 0 ≤ q ≤ 5 , если q = 2 , то p = 2(3b+1) , это
число четно и больше 2 , значит не простое , если q = 3 , то
p = 3(2q+1) , это число кратно 3 и больше 3 и значит также не
простое , если q = 4 , то p = 2( 3b + 2) , это число четно и
больше 2 и следовательно не простое , если q = 0 , то p
кратно 6 и не может быть простым , остаются 2 варианта : 1)
q= 1 , то есть p = 6b+1 и 2) q = 5 ⇒ p = 6b + 5 = 6b+6-1 =
6(b+1) - 1 = 6k -1 , а значит любое простое имеет вид : p = 6n±1
обратное утверждение неверно : например число 35 = 6·6 - 1
, но простым число 35 не является
Поделитесь своими знаниями, ответьте на вопрос:
2. Найдите координаты точки пересечения прямых в) значения переменной хпри которы у = 3-хиу = 2х.
Находим дискриминант ,так как уравнение является квадратным относительно модуля,после чего надо нанести ограничение D>0,почему не равно? Если D=0,то корень будет один,а в силу того,что квадратное уравнение относительно модуля ,то будет два ,а нам нужно 4
Находим корни квадратного уравнения и понимаем ,что 4 корня будет тогда ,когда модули будут равнять числу ,которое больше нуля ,если равно ,то |x|=0=>x=0 - одно решение
Осталось решить два простейших неравенства
Почему я убрал неравенство с плюсом?
Корень больше отрицательного числа при всех а,то есть ответом будет служить ОДЗ - подкоренное выражение больше или равно нуля ,но смотрим на вторую строчку ,мы уже написали это
Решаем второе неравенство и понимаем ,что при этих а будет ровно 4 решения
Минимальное целое а = - 28