ответ:√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В.
1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин).
В момент встречи оба тела вместе проехали весь круг, за время
t = x/(v1+v2) (мин)
При этом 1-ое тело на 100 м больше, чем 2-ое тело.
v1*t = v2*t + 100
v1*x/(v1+v2) = v2*x/(v1+v2) + 100
Умножаем все на (v1+v2)
v1*x = v2*x + 100(v1+v2)
x(v1-v2) = 100(v1+v2)
x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин.
v1*9 = v2*t = v2*x/(v1+v2)
9v1(v1+v2) = v2*x
А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин.
v2*16 = v1*t = v1*x/(v1+v2)
16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными.
{ x = 100(v1+v2)/(v1-v2)
{ 9v1(v1+v2) = v2*x
{ 16v2(v1+v2) = v1*x
Подставляем 1 уравнение во 2 и 3 уравнения
{ 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2)
{ 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2)
Сокращаем (v1+v2)
{ 9v1 = 100v2/(v1-v2)
{ 16v2 = 100v1/(v1-v2)
Получаем
{ 0,09v1 = v2/(v1-v2)
{ 0,16v2 = v1/(v1-v2)
Вычитаем из 2 уравнения 1 уравнение
0,16v2 - 0,09v1 = v1/(v1-v2) - v2/(v1-v2) = (v1-v2)/(v1-v2) = 1
v2 = (0,09v1+1)/0,16
v1-v2 = v1 - (0,09v1+1)/0,16 = (0,16v1-0,09v1-1)/0,16 = (0,07v1-1)/0,16
Подставляем в любое уравнение
0,09v1 = (0,09v1+1)/0,16 : (0,07v1-1)/0,16 = (0,09v1+1)/(0,07v1-1)
0,09v1(0,07v1-1) = (0,09v1+1)
0,0063v1^2 - 0,09v1 - 0,09v1 - 1 = 0
Умножаем все на 1000
6,3v1^2 - 180v1 - 1000 = 0
D/4 = (b/2)^2 - ac = 90^2 - 6,3(-1000) = 8100 + 6300 = 14400 = 120^2
v1 = (-b/2 + √D)/a = (90 + 120)/6,3 = 210/6,3 = 2100/63 = 100/3 м/мин
v2 = (0,09v1+1)/0,16 = (9/3 + 1)/0,16 = 4/0.16 = 400/16 = 25 м/мин
v1-v2 = 100/3 - 25 = (100-75)/3 = 25/3
v1+v2 = 100/3 + 25 = (100+75)/3 = 175/3
Длина трассы
x = 100(v1+v2)/(v1-v2) = 100*175/3 : 25/3 = 100*175/25 = 700 м
ответ: 700 м
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Выберете выражения которые тождественно ровно выражению 4x-5y
Объяснение:
ОДЗ : cos2x ; sin2x
cosx ± 1/4 ; sinx ; cosx 0
x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z
2*2cos^2 x - 2 = 1/2cos2x * ( ... )
2cos2x = 1/2cos2x * ( ... )
можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем
2 = 1/2 * ( ... )
для удобства делаем замену: пусть 2x = t
2 = 1/2 * (/cost + 1/sint)
2 = /2cost + 1/2sint
(sint + cost) / 2costsint = 2
-2 (-/2 sint - 1/2 cost) / 2costsint = 2
-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2
выносим минус за скобки и сокращаем 2
а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво
cos (π/3 - t) / costsint = 2
cos (π/3 - t) = 2costsint
cos (π/3 - t) - sin2t = 0
sin (π/2 - (π/3 - t) - sin2t = 0
sin (π/6 + t) - sin2t = 0
используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)
и делим на 2
cos ((π + 18t)/12) * sin((π - 6t)/12) = 0
cos ((π + 18t)/12) = 0
sin ((π - 6t)/12) = 0
t = 5π/18 + 2πk/3
t = π/6 + 2πk
вспоминаем, что t = 2x
x = 5π/36 + πk/3
x = π/12 + πk
k ∈ Z