Какое же число является самым большим в мире?
Сейчас есть две системы наименования чисел – английская и американская.
Американская – довольно простая. Названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион, что значит тысяча. Далее получаются числа: триллион, квадриллион, квинтиллион, секстиллион, септиллион, октиллион, нониллион и дециллион. Такую систему используют в США, Канаде, России и Франции.
Английская система более распространенная в мире. Ее используют в Испании и Великобритании, а так же в ряде других стран. Здесь названия стоятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард». То есть после триллиона идет триллиард, после квадриллион, квадриллиард и так далее. Получается, что по английской и американской системам одни и те же большие числа называются по-разному.
В русский язык из английской системы пришел только миллиард (10 9), который американцы называют биллионом. Иногда в России употребляют слово триллиард, то есть 1000 триллионов или квадриллион.
Самое большое число, которое применяется в математическом доказательстве, это Число Грэма. Его использовали впервые в 1977 году в доказательстве оценки в теории Рамсея.
Оно выражено в особой 64-уровневой системе, поскольку связано с бихроматическими гиперкубами. Вывел систему Кнут в 1978 году. Он придумал понятие сверхстепень и предложил записывать ее стрелками вверх. В итоге, число Грэма G63 или просто G и является самым большим числом в мире. Оно даже попало в Книгу рекордов Гиннеса. Последние 50 цифр числа Грэма — это ...03222348723967018485186439059104575627262464195387.
Поделитесь своими знаниями, ответьте на вопрос:
пусть p и q простые числа и n-натуральное, то выполняется равенство 1/p+1/q+1/pq=1/n, какие это числа?
1/p + 1/q +1/pq = 1/n. Преобразуем данное равенство к виду (1 + p + q)/pq =1/n => pq=n(1 + p + q) => 1 + p + q = pq/n. Поскольку 1 + p + q - натуральное число, то pq/n также натуральное, т. е. должно выполняться одно из условий: либо n = p, либо n = q, либо n = 1, либо n = pq. При n = pq, 1 + p + q = 1 => p + q = 0, что невозможно При n = p имеем 1 + p + q = q => 1 + p = q - q = 0, что невозможно. Точно так же при n = q, 1 + p + q = p => 1 + q = p - p = 0, что тоже невозможно. Остается вариант n = 1. Тогда 1 + p + q = pq => 1 = pq - p - q. Положим q < p = p - k, где k - натуральное. Тогда pq - p - q = p*(p - k) - p - p +k = p^2 - pk - 2p + k = 1 => p*(p - 2) - k*(p - 1) = 1 => k*(p - 1) = p*(p - 2) - 1 => k = (p^2 - 2p - 1)/(p - 1) = ((p - 1)*(p + 1) - 2p)/(p-1) = p + 1 - 2p/(p - 1). Видим, что 2p должно нацело делиться на p - 1. Т. е. либо p - 1 = 2p и тогда p = -1, что невозможно, либо p - 1 = 1, либо p - 1 = 2. Тогда p = 2 или p = 3. В свою очередь k = p + 1 - 2p/(p - 1) = 2 + 1 - 4 = 3 - 4 = -1 - не подходит, поскольку k - натуральное. Либо k = 3 + 1 - 6/2 = 4 - 3 = 1. Итак k = 1, значит q = p - k = 3 - 1 = 2. Тогда имеем решения: p = 3, q = 2 или p = 2, q = 3. Действительно, в этом случае pq - p - q = 2*3 - 2 - 3 = 6 - 5 = 1.
ответ: n = 1, p = 3, q = 2 или n = 1, p = 2, q = 3.