Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
x = 3i или x = 3 + 2i
Объяснение:
Все формулы для вещественного случая работают и тут.
Дискриминант:
Дальше нужно будет извлечь корень из дискриминанта. В данном случае он легко угадывается, но пусть мы его не угадали; поищем такие вещественные a и b, что . Раскрываем скобки и получаем
Возводим второе уравнение в квадрат, получаем, что сумма и равна 8, их произведение – -9. По теореме, обратной к теореме Виета, и – корни уравнения , очевидно, , . Подстановкой убеждаемся, что равно .
Продолжаем применять формулы:
Это и есть ответ.
Поделитесь своими знаниями, ответьте на вопрос:
Не выполняя построение, найти координаты точек пересечения графика функции: 1) y=2, 7x-8 и y=1, 2x+7 2)6-2/3x (дробь) и y=8/3x-14(дробь)
2.7х-8=1.2х+7
1,5х=15
х=10
у=27-8=19
А(10;-19)
2)
6-2/3х=8/3х-14
10/3х=20
3х=10/20
3х=1/2
х=1/6
у=8/1/2 -14=2
Б(1/6;2)