Chikichev456
?>

Розкласти на множники 1) а² + 14а + 49 - с² = решите 2) а² - 36 - а - в = решите 3) х³ - 5х² - х + 5 = решите

Алгебра

Ответы

Баканова1415
1)a в 3 степени+63-с во 2 степени
2)а-36-b
3)x в 6 степени-10
Татьяна

Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.

Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.

Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).

Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.

Хотел бы я так сказать, однако всего их не 65 :)

Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.

Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.

Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.

Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.

ответ: 67.

Fruktova Gazaryan

Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.

Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.

Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).

Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.

Хотел бы я так сказать, однако всего их не 65 :)

Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.

Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.

Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.

Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.

ответ: 67.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Розкласти на множники 1) а² + 14а + 49 - с² = решите 2) а² - 36 - а - в = решите 3) х³ - 5х² - х + 5 = решите
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

moskwa999
Kulikov1065
alenchik19938823
Drugov_Vladimirovna
mileva84
vkurnosov20008
Azarenkoff
Nazart44446
kulturarai44
cholga69
Koshovkina1721
poch23420
Akolomaeva4
ievlevasnezhana7
gameover98