1. Выпадение 2 очков при 1 бросании = 6, при втором бросании, тоже = 6, значит равновозможных исходов 6*6=36
2. Для того, чтобы 2 очка были наименьшими из выпавших, при первом броске должно выпасть 2, при втором броске - любое количество очков, кроме 1. Или при первом броске - любое, кроме 1, а при втором броске - 2 очка.
3. Возможен вариант выпадения 2 очков и при 1 и при 2 броске, поэтому, при подсчете, вариант это учитывается 2 раза.
3. Выпадение 2 очков из всех, кроме 1 очка = 5, при первом, и 5 при втором броске:
количество благоприятных исходов: 5+5-1=9 ((-1) - выпадение 2 очков в каждом из двух бросаний)
4. Вероятность благоприятного исхода: 9/36=1/4=0.25
ответ: 0.25
Поделитесь своими знаниями, ответьте на вопрос:
Нужно найти множество корней уравнения а) 3x^2-0, 5x=0 б) (4-2x)^2=3x-6 в) 2x^3-x^2+6x-3=0
x(3x - 0,5) = 0
x =0 3x-0,5=0
3x = 0,5
x = 0,5 / 3
x = 5 / 30
x = 1/6
Б) (4-2x)^2=3x-6
4^2 - 2*4*2x + (2x)^2 = 3x-6
16 - 16x + 4x^2 = 3x -6
4x^2 -16x - 3x +16 + 6 = 0
4x^2 - 13x + 22 = 0
(Через дискриминант)
D = b^2 - 4ac
D = (-13)^2 - 4 * 4 * 22 = 169 - 352 = -183
D < 0 => НЕТ РЕШЕНИЯ
В) 2x^3-x^2+6x-3=0 x (2x^2 - x + 6x - 3) = 0
x = 0 2x^2 + 5x - 3 = 0
D = b^2-4ac
D = 5^2 - 4 * 2 * (-3) = 25 + 24 = 49 > 0 => 2 корня
x= -b ⁺₋ √D / 2a
X₁ = (-5 + √49) / 2 * 2 = 4/4 = 1
X₂ = (-5 - √49) / 2 * 2 = -14 / 4 = - 7/2 = -3,5
как лучший ответ