1) 3х - 7 < x + 1,
3x - x < 1 + 7,
2x < 8,
x < 4.
ответ: х ∈ (-∞; 4).
2) 2 + x > 8 - x,
x + x > 8 - 2,
2x > 6,
x > 3.
ответ: х ∈ (3; +∞).
3) 1 - x ≥ 2x - 5,
-x - 2x ≥ -5 - 1,
-3x ≥ -6,
x ≤ 2.
ответ: х ∈ (-∞; 2].
4) 2x + 1 > x + 6,
2x - x > 6 - 1,
x > 5.
ответ: х ∈ (5; +∞).
5) 4x + 2 > 3x + 1,
4x - 3x > 1 - 2,
x > -1.
ответ: х ∈ (-1; +∞).
6) 6x + 1 < 2x + 9,
6x - 2x < 9 - 1,
4x < 8,
x < 2.
ответ: х ∈ (-∞; 2).
Поделитесь своими знаниями, ответьте на вопрос:
Какое наибольшее число точек пересечения может иметь 5 различных прямых
а) 3 прямые имеют наибольшее число точек пересечения 3 ,
б) 4 прямые - 6 точек пересечения ,
в) 5 прямых - 10 точек пересечения ,
г) n прямых - \frac{n(n-1)}{2}
2
n(n−1)
точек пересечения .
Решение. Заметим, что наибольшее число точек попарных пересечений получается, если каждая прямая пересекается с каждой и при этом никакие три прямые не пересекаются в одной точке. В этом случае количество точек попарных пересечений равно количеству пар прямых из данного множества n прямых. Как мы знаем, это число равно \frac{n(n-1)}{2}
2
n(n−1)