Вравнобокой трапеции abcd диагонали ac и bd перпендикулярны, боковые стороны ab и cd равны 1, отрезок, соединяющий середины оснований равен 0, 8. найти среднюю линию.
Диагонали равнобедренной трапеции равны и при пересечении образуют с её основаниями равнобедренные треугольники, а так как диагонали данной трапеции взаимно перпендикулярны, эти треугольники - прямоугольные. ОМ и ОК - медианы и высоты равнобедренных треугольников, перпендикулярны параллельным основаниям и проходят через одну точку О, следовательно, лежат на одной прямой. Отрезок МК, который соединяет середины оснований трапеции, - сумма медиан этих треугольников.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине ⇒ МО=ВС:2, ОК=АD:2, ⇒ ВМ+АК=МК. Но ВМ+АК = полусумма оснований, т.е. равна средней линии трапеции. Следовательно, средняя линия трапеции АВСD равна МК и равна 0,8
katcoffe3
03.01.2020
Если графики пересекаются, значит имеют общую точку (х;у). Тогда можно сделать вывод, что 3х-3=х-1 (х-1 взято из у+1-х=0, если у оставить в одной стороне, а другое перенести, то получится х-1) Решаем как обычное линейное уравнение 3х-3=х-1 2х=2 х=1 Подставим значение х в любое из уравнений, получится что у=х-1 у=1-1 у=0 Подставляем значения как координаты точки и пересечения и получаем, что (1;0) точка пересечения
NikolaevichIP1136
03.01.2020
Надо найти пределы интегрирования, то есть точки пересечения двух парабол. Для этого приравниваем 2 уравнения. (1/2)x^2-x+(1/2) = -x^2+2x+5 Получаем квадратное уравнение: (3/2)х² - 3х - (9/2) = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=(-3)^2-4*1.5*(-4.5)=9-4*1.5*(-4.5)=9-6*(-4.5)=9-(-6*4.5)=9-(-27)=9+27=36; Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√36-(-3))/(2*1.5)=(6-(-3))/(2*1.5)=(6+3)/(2*1.5)=9/(2*1.5)=9/3=3; x₂=(-√36-(-3))/(2*1.5)=(-6-(-3))/(2*1.5)=(-6+3)/(2*1.5)=-3/(2*1.5)=-3/3=-1. Парабола с отрицательным коэффициентом перед х² будет выше второй, поэтому при интегрировании надо второго уравнения вычесть первое. ∫(-x^2+2x+5-((1/2)x^2-x+(1/2))dx = Подставив пределы от -1 до 3, получаем S = 16.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобокой трапеции abcd диагонали ac и bd перпендикулярны, боковые стороны ab и cd равны 1, отрезок, соединяющий середины оснований равен 0, 8. найти среднюю линию.
Диагонали равнобедренной трапеции равны и при пересечении образуют с её основаниями равнобедренные треугольники, а так как диагонали данной трапеции взаимно перпендикулярны, эти треугольники - прямоугольные. ОМ и ОК - медианы и высоты равнобедренных треугольников, перпендикулярны параллельным основаниям и проходят через одну точку О, следовательно, лежат на одной прямой. Отрезок МК, который соединяет середины оснований трапеции, - сумма медиан этих треугольников.
Медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине ⇒ МО=ВС:2, ОК=АD:2, ⇒ ВМ+АК=МК. Но ВМ+АК = полусумма оснований, т.е. равна средней линии трапеции. Следовательно, средняя линия трапеции АВСD равна МК и равна 0,8