а) х/(x-3) + 3/(x-2)= 3/(x ²-5x+6) учтём, что (x ²-5x+6) = (х-3)(х -2) и умножим обе части уравнения на это выражение (освободимся от дробей) получим: х(х -2) + 3 (х -3) = 3 х-2≠0, х-3 ≠ 0 х² -2х +3х -9 -3 = 0 х² -х -12 = 0 х₁ = -3 и х₂ = 4 ответ: х₁ = -3 и х₂ = 4 (1-x)/(x-4) + 3/(3-x)= 3/(x²-7x+12) учтём, что (x ²-7x+ 12) = (х-3)(х -4) и умножим обе части уравнения на это выражение (освободимся от дробей), сменим знак перед 2-й дробью. получим: (1 - х)( х -3) -3( х - 4 ) = 3 х -3 ≠0, х - 4 ≠0 х - х² -3 +3х -3х +12 -3 = 0 -х²+х +6 = 0 х² - х - 6 = 0 х₁ = -2 и х₂ = 3(посторонний) ответ: -2
PushkinaKurnosov984
19.07.2021
Так как у нас квадраты двух последовательный чисел, то один из них является четным числом, а второй нечетным, если нечетный третий член прогрессии, тогда второй должен быть четным, но разность между четным числом и 2 - четная, а между третьим (нечетным) и вторым (четным) членами нечетная, чего быть не может, значит второй член прогрессии нечетный, а третий четный. Пусть второй член прогрессии равен: (2k-1)², а третий (2k)², где k ≥ 2, тогда должно выполняться: d = (2k-1)² - 2 = (2k)² - (2k-1)²
ES-биссектриса ⇒ угол MES = SEP = 65°
Угол NEP = 180° - MEP= 180° - 65° - 65° = 50° ⇒ угол SEN = 50° + 65° = 115°
ответ: 115°