Serafim
?>

Дробная линейная функция заданная уравнением у=7/х+2-4а) определить горизонтальную асимптоту. б) определить вертикальную асимптомту.в) определить график функции. ​

Алгебра

Ответы

sbraginets
Левая часть неравенства должна существовать, поэтому 
a + x >= 0,
a - x >= 0

Переписываем систему в виде
-a <= x <= a,
|x| <= a
откуда видно, что a >= 0.
Можно сразу записать, что если a < 0, то решений нет.

Тогда обе части исходного неравенства неотрицательные, и можно возводить в квадрат.
a + x + 2sqrt(a^2 - x^2) + a - x > a^2
sqrt(a^2 - x^2) > a(a - 2)/2

Если правая часть отрицательна, то решение неравенства - все значения, при которых корень существует.
a(a - 2)/2 < 0 при 0 < a < 2, так что еще одна часть ответа такова: если 0 < a < 2, то -a <= x <= a.

Осталось рассмотреть случай, когда a(a - 2) >= 0. Тогда вновь можно возводить неравенство в квадрат.
a^2 - x^2 > (a^4 - 4a^3 + 4a^2)/4
x^2 < a^3 (4 - a)/4.

У этого неравенства есть шанс иметь решения, если правая часть строго положительна, поэтому предпоследняя часть ответа: если a = 0 или a >= 4, решений нет. Осталось рассмотреть последний случай 2 <= a < 4.

Заметим, что при таких a правая часть меньше a^2, ведь 
a^3 (4 - a) / 4 / a^2 = a (4 - a) / 4 < 2 * (4 - 2) / 4 = 1 (известно, что квадратичная парабола a (4 - a) / 4 достигает максимального значения в вершине), поэтому все корни существуют, и последняя часть ответа: если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2.

Собираем всё в одно и получаем ответ.
ответ. Если 0 < a < 2, то -a <= x <= a; если 2 <= a < 4, то -sqrt(a^3 (4 - a))/2 < x < sqrt(a^3 (4 - a))/2, для остальных a решений нет.
Posadskii-Sergeevna
S = Vt,
где S — расстояние, V — скорость, а t — время. 

Итак, рассуждаем. Грузовой автомобиль проехал неизвестное расстояние за 8 часов, двигаясь со скоростью 60км/ч. Значит, чтобы найти расстояние, которое он проехал, необходимо время (8 часов) умножить на скорость (60км/ч). 
8ч. × 60км/ч. = 480 километров — расстояние, которое проехал грузовой автомобиль. 

Разбираемся с легковой машиной. 
S = Vt —> t = \frac{S}{V}
где t — время, S — путь, а V — скорость. 
Расстояние мы вычислили, а скорость легковой машины дана в условии. 
t = \frac{480km}{120km/h} = 4 часа — время, потраченное легковой машиной на путь. 


Мы видим, что скорость легковой машины ровно в 2 раза больше скорости грузового автомобиля —> следовательно, легковая машина и проехала это расстояние в 2 раза быстрее, чем грузовой автомобиль. Исходя из выводов, найти время, потраченное легковой машиной на путь, очень просто: необходимо 8 часов разделить на 2, что равно 4 часа. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дробная линейная функция заданная уравнением у=7/х+2-4а) определить горизонтальную асимптоту. б) определить вертикальную асимптомту.в) определить график функции. ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

fixer2006
shoko91
rukodelnizza1
borodin
Olifirenko119
Татьяна Марина1287
ikhilovb76
KononovaMaiorov453
martinzdraste
hachatryanlilit1983
КОРМИЛИЦЫНА
Даю максимальное кол-во !)
Викторовна
Измайлова-Алексей
Yelena Kotova
dlydesertov1