artemy682719
?>

подайте вираз 3/х2-2х * 2х-4/х у вигляді дробу.

Алгебра

Ответы

volodin-alexander


подайте вираз 3/х2-2х * 2х-4/х у вигляді дробу.
nzaripova313

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

Evelina Mariya
Номинальный вес всех гирек (ну, тот, который должен быть, если бы не гады-торговцы) 4500 г. Разделим их на три группы по три гирьки так, чтобы суммарный вес каждой группы гирь был 1500 г - т.е. на одинаковые по весу кучки. Это можно сделать, к примеру, так: 
1) 200, 600 и 700;
2) 100, 500 и 900;
3) 300, 400 и 800.
Приступаем к взвешиванию.

    1. Погружаем на чаши весов две кучки - любые, к примеру, на левую чашу - кучку № 1, на правую - кучку № 2. Если одна из кучек оказалась легче другой, значит, фальшивый эталон в ней, этой самой легкой кучке; если обе кучки весят одинаково, то кучка с затесавшимся в нее фальшивым эталоном - третья, т.е. та, которую не взвешивали.

     2. Берем "лёгкую" кучку и выбираем из нее две гирьки (третью гирьку убираем подальше, но не смешиваем с остальными, потому что остальные - наверняка полновесные, а эта, отдельно лежащая, может оказаться той самой, которую мы пытаемся обнаружить). Затем кладем в две чаши весов две выбранные ранее гирьки - те, что у меня выделены жирным шрифтом; к каждой добавляешь из "хороших" гирь одну так, чтобы на левой и правой чаше номинальный вес получился одинаковым. Взвешиваем. Если чаши уравновесились, то фальшивая гиря - та, что отложена. Если одна чаша легче, то фальшивая на ней, и именно та, что сначала была выделена жирным шрифтом))).

Для лучшего понимания приведу пример.

Вот разделили мы гири на 3 кучки так, как я предлагала сначала. Повторю раскладку:
1) 200, 600 и 700;
2) 100, 500 и 900;
3) 300, 400 и 800.

Взвешиваем первую и вторую кучки.

Если легче оказалась первая, гирьку, к примеру, в 700 г откладываем отдельно, а гирьки на 200 и 600 г и кладем на разные чаши весов; к первой добавляем из второй, хорошей, кучки гирю в 900 г, а ко второй - гирю в 500 г (потенциально плохие гирьки я выделяю жирным). В итоге на каждой чаше должно лежать по 1100 г. Если они и вправду весят одинаково, то фальшивая гирька - отложенная, т.е. 700 г. Если легче первая чаша, то плохая гирька - 200 г, если вторая - то 600 г.

Если легче оказалась вторая кучка, то откладываем гирьку в 100 г, а на весы кладем гири в том же порядке, что и в раз. Тогда в случае равновесия плохая - 100 г, если легче первая чаша - то 900 г, а если легче вторая - то 500 г.

Если первые две кучки равновесны, то распределяем для проверки третью кучку, потому что фальшивка - в ней. Допустим, 800 откладываем в сторонку, 300 кладем на левую чашу, а 400 на правую. Добавляем на левую 700 г, на правую 600 г. Взвешиваем. Вес равный - тогда фальшивая 800 г, левая легче - фальшивка 300 г, правая легче - фальшивая гиря в 400 г.

Аминь.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

подайте вираз 3/х2-2х * 2х-4/х у вигляді дробу.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Deniskotvitsky6422
Дмитрий-Олейникова
(x-3)(x+3)-(x-1)(x+4)=3x-2 решить уравнение
zakaz
gaina6678
olyafom1234
nickcook424
Shevtsov1818
vikgor45
iv1as2
vadim330
es196
StudioArtNails
Тариелович871
lobutev
pelagia-kola2658