Пусть v катера будет х, а v течения реки будет у. Если катер часа по течению, то за это время он расстояние: (х+у)3. Когда он проходил по озеру, то находился в стоячей воде без течения и расстояние 3х. За 6 часов он расстояние 114км, и теперь составим уравнение:
(х+у)3+3х=114. Разберём вторую часть задачи. Катер против течения 4 часа, поэтому за это время он х-у)4. Так как он расстояние на 10 км больше, чем за 3 часа по озеру, то по озеру он пройдёт 2х и разница составляет 10км. По этим данным составим второе уравнение:
(х-у)4-3х=10. Решим систему уравнений:
{(х+у)3+3х=114
{(х-у)4-3х=10
{3х+3у+3х=114
{4х-4у-3х=10
{6х+3у=114 |÷3
{х-4у=10
{2х+у=38
{х=10+4у.
Подставим эти значения в первое уравнение:
2х+у=38
2(10+4у)+у=38
20+8у+у=38
9у=38-20
9у=18
у=18÷9
у=2; итак v течения реки=2км/ч
Теперь подставим в уравнение значение у:
х=10+4у
х=10+4×2=10+8=18км/ч.
ответ: v катера=18км/ч;
v течения реки=2км/ч
Термин «ортогональная проекция» ето– как название отображения и как название образа при этом отображении.
отображение, сопоставляющее точке P точку P', также называется ортогональной проекцией. В этом случае говорят также об ортогональном проектировании.
ортогональное проектирование плоскости на лежащую в ней прямую или пространства на плоскость – это частный случай параллельного проектирования, в котором направление проекции перпендикулярно прямой (или плоскости), на которую проектируют. аналогично, ортогональную проекцию пространства на прямую можно рассматривать как параллельную проекцию на прямую вдоль плоскости, перпендикулярной прямой. Поэтому ортогональная проекция сохраняет все свойства параллельной проекции.
Поделитесь своими знаниями, ответьте на вопрос:
X²/x²-9=12-x/x²-9 нужно полное решение
X²/x²-9=12-x/x²-9
X²/x²-9-12-x/x²-9=0
х-12+х/x²-9=0
2х-12/ x²-9 = 0
2х - 12=0
x²-9 не равно 0
Х=6
х-3 не равно 0, х не
равно 3
х+3 не равно 0, х не
равно -3
ответ: 6