ars-trushakova
?>

Моторная лодка по течению реки 8 км, против течения - 3 км, затратив на весь путь 0, 75 часа. найдите собственную скорость лодки, если скорость течения реки равна 2 км/ч

Алгебра

Ответы

nv6634

х - скорость лодки

8/(х + 2) + 3/(х - 2) = 0,75

8(х-2) + 3(х + 2) = 0,75 (х^2 - 4)

8х - 16 + 3х + 6 = 0,75х^2 - 3

11х - 10 + 3 - 0,75х^2 = 0

-0,75х^2 + 11х - 7 = 0

D = b^2 - 4ас = 11^2 - 4 * (-7) * (-0,75) = 121 - 21 = 100

х = (-b ± √D)/2a = (-11 ± 10)/(-1,5) = 14; 0,(6)

ответ: Скорость лодки 14 км/ч или 0,(6) км/ч

Kisuha8465
Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.

2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.

Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 
maslprod
Если (х,у) - какое-то решение системы, то т.к. х встречается только в квадрате, то (-х, у) - тоже решение,  Значит количество решений системы всегда четное, за исключением случая, когда есть решение с х=0. В этом случае y=A, и A=√3 или A=-√3.
1) Если A=√3, то y=x²+√3,
(x²+√3)²+x²=3
x⁴+(2√3+1)x²=0
x²(x²+2√3+1)=0
x=0; x²+2√3+1=0 действительных корней не имеет.
Итак, в этом случае 1 решение.

2) Если A=-√3, то y=x²-√3,
(x²-√3)²+x²=3
x⁴+(-2√3+1)x²=0
x²(x²-2√3+1)=0
x=0; x²=2√3-1>0 - дает еще два решения.
Итак, в этом случае 3 решения.

Все это можно понять и из графиков. Первое уравнение задает окружность радиусом √3, а второе - параболу y=x² сдвинутую на А по оси Оу. В силу симметрии графиков относительно оси Оу, понятно что всегда будет четное количество решений (либо не будет вообще). 1 решение или 3 возможны только в случае, когда вершина параболы y=x²+A совпадает с верхней или нижней точкой окружности, т.е. при A=√3 или А=-√3. В первом случае, очевидно одно решение. А во втором не так очевидно, что 3 решения, но это проверяется, как я сделал выше. 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Моторная лодка по течению реки 8 км, против течения - 3 км, затратив на весь путь 0, 75 часа. найдите собственную скорость лодки, если скорость течения реки равна 2 км/ч
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

alfastore4
ZharikovZalina
asskokov
ksenyabobrovich7214
Сулейманова
zaretskaya37
set907
dashasnegirva
Anna Artem
milanmilan8672
znaberd786
kosbart28
kate1610
salesrawtogo
VadimovichSvetlana622