?>
Решить системы уравнений: 1) \left \{ {{3x^{4}-2x^{2}y=24 } \atop {2y^{2}-3x^{2}y=-6 }} \right. 2) \left \{ {{\sqrt{\frac{x}{y} } - 5 \sqrt{\frac{y}{x}} =4} \atop {x+y=104}} \right. 3) x(x+y+z)=7 y(x+y+z)=14 z(x+y+z)=28 (система из 3 уравнений)
Ответы
Половина пути для второго автомобиля 0,5.
Пусть х км/ч – скорость первого автомобилиста,
тогда (х + 54) км/ч - скорость второго автомобилиста
Время второго автомобиля, за которое он весь путь
0,5 / 36 + 0,5/(x + 54)
Время первого автомобиля равно времени второго автомобиля.
1/x = 0,5 / 36 + 0,5/(x + 54)
1/x - 0,5 / 36 - 0,5/(x + 54) = 0
36(x + 54) – 0,5x(x + 54) – 0,5*36x = 0
36x + 1944 – 0,5x² - 27x – 18x = 0
– 0,5x² - 9x + 1944 = 0 I : (-0.5)
x² + 18x – 3888 = 0
D = 324 + 4*1*3888 = 15876 = 1262
X₁ = (- 18 – 126)/2 = - 72 не удовлетворяет условию задачи
X₂ = (- 18 + 126)/2 = 54
54 км/ч - скорость первого автомобилиста
ответ: 54 км/ч