Чтобы найти вероятность, нужно количество благоприятных событий разделить на количество всех возможных событий.
Игральный кубик имеет 6 граней, значит при его бросании может выпасть либо 1, либо 2, либо 3, либо 4, либо 5, либо 6 - то есть количество всех возможных событий = 6.
По условию нам нужны только четные числа. В диапазоне от 1 до 6 всего 3 четных числа - 2, 4, 6, значит, количество благоприятных событий = 3.
Итак, количество благоприятных событий - 3, общее количество всех возможных событий - 6.
В числитель записываем благоприятные события (3), в знаменатель - все возможные события (6).
Найдем вероятность.
- вероятность того, что при бросании кубика Ире выпадет четное число очков.
ответ: вероятность равна 0,5.
optikmir
27.10.2020
Рациональным числом называется такое число,которое не представляется в виде бесконечной периодической дроби. А вот иррациональное - бесконечная периодическая дробь. Иначе говоря,корень должен быть "тяжело извлекаем" в случае иррационального числа. Вот,например случай 2)-рациональное,очевидно,это 13. Рассмотрим случай 4).Переведём подкоренное в неправильную дробь - 25\4,корень извлекается,будет 5\2,следовательно,число рациональное. В случае 3) степень чётная,поэтому при перемножении можно убедиться,что число будет рациональным(целым здесь) Из 1,6 корень не извлечём. Хочется 4 приплести,да не выйдет. Не так давно объясняла другому человеку случай 4). Послушайте,если вам на экзамене попадутся десятичные дроби под корнями и потребуется выбрать рациональное число,берите ТО,У КОТОРОГО ПОСЛЕ ЗАПЯТОЙ ЧЁТНОЕ КОЛИЧЕСТВО ЗНАКОВ. Здесь 1 запятая после запятой.Случай 1 вылетает.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решить номера 465-469. тему пропустил, а дз нужно написать. много
Чтобы найти вероятность, нужно количество благоприятных событий разделить на количество всех возможных событий.
Игральный кубик имеет 6 граней, значит при его бросании может выпасть либо 1, либо 2, либо 3, либо 4, либо 5, либо 6 - то есть количество всех возможных событий = 6.
По условию нам нужны только четные числа. В диапазоне от 1 до 6 всего 3 четных числа - 2, 4, 6, значит, количество благоприятных событий = 3.
Итак, количество благоприятных событий - 3, общее количество всех возможных событий - 6.
В числитель записываем благоприятные события (3), в знаменатель - все возможные события (6).
Найдем вероятность.
ответ: вероятность равна 0,5.