Это довольно трудная задача если решать в лоб, но можно увидеть необычное использование теоремы Пифагора.
Если изобразить это уравнение, то это просто окружность с центром в точке (0,0) радиуса 3.
А пото внимательно смотрим на косинусы и получаем что по теореме Чевы можно их сложить, а значит получаем:
(переписываете исходное уравнение)
Снизу пишите по теореме Чевы - решения есть при любых а
Осталось эти решения найти. И тут то и применяем всю красоту математики. Пишем:
По т. Соса x=cos(x-2a)*S, S найдем по теореме Ницкого: S=14-12+2=4
x=4*a
Красиво? Мне кажется очень.
Поделитесь своими знаниями, ответьте на вопрос:
1) запишите в виде выражения произведение трёх последовательных чисел, большее из которых равно m. 2) 6·(2x – 3y) – 2·(x – y), если 8y – 5x = 16, 5. 3) вокруг круглого парка размечены две беговые дорожки. расстояние от центра парка до середины зелёной дорожки составляет 130 м. найдите длину желтой беговой дорожки (по линии её середины), если расстояние между серединами беговых дорожек составляет 3 м. ответ округлите до сотен. 75
Будем считать, что задано уравнение: 4 – 5cos7x – 2sin²7x = 0.
Заменим 2sin²7x = 2(1 - cos²7x):
4 – 5cos7x – 2(1 - cos²7x) = 0. Заменим cos7x = t и получим квадратное уравнение: 2 - 5t + 2t² = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-5)^2-4*2*2=25-4*2*2=25-8*2=25-16=9;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1=(√9-(-5))/(2*2)=(3-(-5))/(2*2)=(3+5)/(2*2)=8/(2*2)=8/4=2 (нет по ОДЗ;
t_2=(-√9-(-5))/(2*2)=(-3-(-5))/(2*2)=(-3+5)/(2*2)=2/(2*2)=2/4=1/2.
Обратная замена: cos7x = 1/2.
7х = 2πk +- (π/3), k ∈ Z.
ответ: х = (2/7)πk +- (π/21), k ∈ Z.