ответ:в фото
Объяснение:
ответ:√√Пусть длина трассы x м, стартуют они в точке А, а встречаются в В.
1-ое тело имеет скорость v1 (м/мин), 2-ое тело v2 < v1 (м/мин).
В момент встречи оба тела вместе проехали весь круг, за время
t = x/(v1+v2) (мин)
При этом 1-ое тело на 100 м больше, чем 2-ое тело.
v1*t = v2*t + 100
v1*x/(v1+v2) = v2*x/(v1+v2) + 100
Умножаем все на (v1+v2)
v1*x = v2*x + 100(v1+v2)
x(v1-v2) = 100(v1+v2)
x = 100(v1+v2)/(v1-v2)
1-ое тело вернулось в точку А через 9 мин, то есть за 9 мин оно расстояние, которое до встречи ое тело за t мин.
v1*9 = v2*t = v2*x/(v1+v2)
9v1(v1+v2) = v2*x
А 2-ое тело вернулось в А через 16 мин, то есть за 16 мин оно расстояние, которое перед этим ое тело за t мин.
v2*16 = v1*t = v1*x/(v1+v2)
16v2(v1+v2) = v1*x
Получили систему из 3 уравнений с 3 неизвестными.
{ x = 100(v1+v2)/(v1-v2)
{ 9v1(v1+v2) = v2*x
{ 16v2(v1+v2) = v1*x
Подставляем 1 уравнение во 2 и 3 уравнения
{ 9v1(v1+v2) = v2*100(v1+v2)/(v1-v2)
{ 16v2(v1+v2) = v1*100(v1+v2)/(v1-v2)
Сокращаем (v1+v2)
{ 9v1 = 100v2/(v1-v2)
{ 16v2 = 100v1/(v1-v2)
Получаем
{ 0,09v1 = v2/(v1-v2)
{ 0,16v2 = v1/(v1-v2)
Вычитаем из 2 уравнения 1 уравнение
0,16v2 - 0,09v1 = v1/(v1-v2) - v2/(v1-v2) = (v1-v2)/(v1-v2) = 1
v2 = (0,09v1+1)/0,16
v1-v2 = v1 - (0,09v1+1)/0,16 = (0,16v1-0,09v1-1)/0,16 = (0,07v1-1)/0,16
Подставляем в любое уравнение
0,09v1 = (0,09v1+1)/0,16 : (0,07v1-1)/0,16 = (0,09v1+1)/(0,07v1-1)
0,09v1(0,07v1-1) = (0,09v1+1)
0,0063v1^2 - 0,09v1 - 0,09v1 - 1 = 0
Умножаем все на 1000
6,3v1^2 - 180v1 - 1000 = 0
D/4 = (b/2)^2 - ac = 90^2 - 6,3(-1000) = 8100 + 6300 = 14400 = 120^2
v1 = (-b/2 + √D)/a = (90 + 120)/6,3 = 210/6,3 = 2100/63 = 100/3 м/мин
v2 = (0,09v1+1)/0,16 = (9/3 + 1)/0,16 = 4/0.16 = 400/16 = 25 м/мин
v1-v2 = 100/3 - 25 = (100-75)/3 = 25/3
v1+v2 = 100/3 + 25 = (100+75)/3 = 175/3
Длина трассы
x = 100(v1+v2)/(v1-v2) = 100*175/3 : 25/3 = 100*175/25 = 700 м
ответ: 700 м
Объяснение:
Объяснение:
Рассмотрим девятизначное число вида a₁a₂a₃a₄a₅a₆a₇a₈a₉=a₁·10⁸+a₂·10⁷+a₃·10⁶+a₄·10⁵+a₅·10⁴+a₆·10³+a₇·10²+a₈·10¹+a₉, у которого все цифры различны.
Разобъём данные девять цифр на пары (a;10-a)={(1;9); (2;8); (3;7);(4;6);(5;5);(6;4);(7;3);(8;2);(9;1)}
Сопоставим каждое девятизначное число из условия другому числу след образом.
a₁a₂a₃a₄a₅a₆a₇a₈a₉,↔(10-a₁)(10-a₂)(10-a₃)(10-a₄)(10-a₅)(10-)(10-a₆)(10-a₇)(10-a₈)(10-a₉)
Однозначность такого сопоставления очевидно
Сумма любых двух чисел из таких пар равна
(a₁·10⁸+a₂·10⁷+a₃·10⁶+a₄·10⁵+a₅·10⁴+a₆·10³+a₇·10²+a₈·10¹+a₉)+
(10-a₁)·10⁸+(10-a₂)·10⁷+(10-a₃)·10⁶+(10-a₄)·10⁵+(10-a₅)·10⁴+(10-a₆)·10³+(10-a₇)·10²+(10-a₈)·10¹+a₉)=
10·10⁸+10·10⁷+10·10⁶+10·10⁵+10·10⁴+10·10³+10·10²+10·10¹+10=
=10⁹+10⁸+10⁷+10⁶+10⁵+10⁴+10³+10²+10¹+10=1111111110
Количество же таких пар равно 9!/2
Значить сумма всех чисел удовлетворяющих условию равна
1111111110·9!/2=1111111110·7!·36 что кратно 111111111
Ч.Т.Д.
Поделитесь своими знаниями, ответьте на вопрос:
Используя данные, обозначенные на рисунке, найдите длину отрезка nm
Объяснение:
7.5