ОДЗ:
Решаем каждое неравенство:
⇒ ⇒
⇒ ⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒ ⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒ ⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒ ⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
ОДЗ:
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒ ⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒ ⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
С учетом ОДЗ получаем окончательный ответ:
Поделитесь своими знаниями, ответьте на вопрос:
Решить систему уравнений sinx< =0и sinx> -корень из 3 /2
скоротсть течения 0,5 км/ч.
Объяснение:
Обозначим скорость течения за x км/ч.Тогда скорость лодки по течению (5+x)км/ч, а против течения - (5-x) км/ч. Переведем 3 ч 40 мин в часы: 3+40/60=180/60+40/60=220/60=11/3 ч. Расстояние,которое лодка по течению: S1=(5+x)*3. Расстояние против течения: S2=(5-x)*(11/3). Так как по условию S1=S2, получаем уравнение:
(5+x)*3=(5-x)*(11/3). // Умножим обе части на 3,чтобы упростить
(5+x)*9=(5-x)*11 //Раскроем скобки
45+9x=55-11x //Переносим с x в левую часть,без x - в правую.
9x+11x=55-45
20x=10
x=0,5.
Итак, скоротсть течения 0,5 км/ч.