В решении.
Объяснение:
называется "выделение полного квадрата).
1) х² + 8х - 1 = 0
х² + 8х + 4² - 4² - 1 = 0
(х + 4)² - 17 = 0
(х + 4)² = 17
х + 4 = ±√17
х = ±√17 - 4;
2) 2х² - 5х - 7 = 0/2
↓
х² - 2,5х - 3,5 = 0
х² - 2,5х + 1,25² - 1,25² - 3,5 = 0
(х - 1,25)² - 5,0625 = 0
(х - 1,25)² = 5,0625
х - 1,25 = ±√5,0625
х - 1,25 = ±2,25
х = -2,25 + 1,25
х₁ = -1;
х = 2,25 + 1,25
х₂ = 3,5;
3) 4х² - 16х - 1 = 0/4
↓
х² - 4х - 0,25 = 0
х² - 4х + 2² - 2² - 0,25 = 0
(х - 2)² - 4,25 = 0
(х - 2)² = 4,25
х - 2 = ±√4,25
х - 2 = ±√(0,25*17)
х - 2 = ±0,5√17
х = ±0,5√17 + 2;
4) 5х²/4 - 3х/7 - 3 = 0/5/4
х² - 12х/35 + (6/35)² - (6/35)² - 2,4 = 0
(х - 6/35)² - 2904/1225 = 0
(х - 6/35)² = 2904/1225
х - 6/35 = ±√(2904/1225)
х - 6/35 = ±√((16*186)/1225)
х - 6/35 = (±4√186)/35
х = (±4√186)/35 + 6/35.
Проверка путём подстановки вычисленных значений х в уравнения показала, что данные решения удовлетворяют данным уравнениям.
ответ: хЄ ( 1 ; 2 ) U ( 3 ; 4 ) .
Объяснение:
log₀,₅( x² - 5x + 6 ) > - 1 ; ОДЗ : x² - 5x + 6 > 0 ; D = 1 > 0 ;
рішаємо нерівність методом інтерв. x₁ =2 ; x₂ = 3 ; xЄ (- ∞ ;2)U(3 ;+ ∞ ).
log₀,₅( x² - 5x + 6 ) > log₀,₅0,5⁻¹ ;
a = 0,5 < 1 ( спадна ф - ція ) ;
{ x² - 5x + 6 < 2 , ⇒ { x² - 5x + 4 < 0 ,
{ x² - 5x + 6 > 0 ; { x² - 5x + 6 > 0 ; рішаємо нерівності :
1) x² - 5x + 4 < 0 ; D = 9 > 0 ; x₁ = 1 ; x₂ = 4 ; хЄ ( 1 ; 4 ) ;
2) x² - 5x + 6 > 0 ; D =1 > 0 ; x₁ = 2 ; x₂ = 3 ; xЄ (- ∞ ;2 )U( 3 ;+ ∞ ) .
Зобразимо проміжки на одній числовій прямій і запишемо
розв"язки : хЄ ( 1 ; 2 ) U ( 3 ; 4 ) .
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение: 25y^2-36=0 разложите на множители многочлен: 18mn^2-27nm^2-3n^3 представьте в виде произведения многочлен: 4a^2 x^2-y^2-4ax заранее . если кто не знает, то '^2' означает в квадрате т.е. (во второй степени)
-9mn^2-3n^3
32a^3 x^3 y^2