x ∈{-2} ∪ [2;7]
Объяснение:
1) Найдём нули функции у₁ = х²-5х-14:
х²-5х-14 = 0
х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2
х₁ = 5/2 + 9/2 = 14/2 = 7
х₂ = 5/2 - 9/2 = - 4/2 = -2
Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке
x ∈ [-2; 7].
2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.
Найдём нули функции у₂ =х²- 4:
х²- 4 = 0
х² = 4
х = ± √4
х₃ = - 2
х₄ = 2
Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:
x ∈(-∞; -2] ∪ [2;+∞)
3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2; х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:
x ∈{-2} ∪ [2;7]
ответ: x ∈{-2} ∪ [2;7]
Поделитесь своими знаниями, ответьте на вопрос:
Найди значение выражения x2+4x3√+12, если очень нужно
Найдём коэффициенты а, в, с
Подставим координаты точки А
-6 = а· 0² + в·0 + с → с = -6
Подставим координаты точки В
-9 = а·1² + в·1 - 6 → а + в = -3 (1)
Подставим координаты точки С
6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2)
Подставим (2) а (1)
а + 2 - 6а = -3 → а = 1
Из (2) получим в = -4
Итак, мы получили уравнение параболы:
у = х² - 4х - 6
Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2
Ординату вершины параболы найдём,
подставив в уравнение параболы х = m = 2
у = 2² - 4 · 2 - 6 = -10
ответ: вершиной параболы является точка с координатами (2; -10)