Пусть х (км/ч) - скорость течения, тогда (10+х) - скорость моторной лодки по течению, а (10-х) - скорость моторной лодки против течения. Составим уравнение.
39:(10+х)+28:(10-х)=7
39(10-х)+28(10+х)=7(10+х)(10-х)
390-39х+280+28х=7(100+10х-10х-х^2)
670-11х=700-х^2
7x^2-11х+670-700=0
7х^2-11х-30=0 -квадратное уравнение
Решаем квадратное уравнение.
D (Дискриминант уравнения) = b 2 - 4ac = 961
х1=(-b+√D)/2a=(11+31)/(2*7)=42/14=3
х2=(-b-√D)/2a=(11-31)/(2*7)=-20/14=-10/7
Скорость течения: 3 км/ч
Проверка:
39:(10+3)+28:(10-3)=7
39:13+28:7=7
3+4=7
7=7
ответ: скорость течения реки 3 км/ч
Голосова-Лобанов1555
26.02.2023
1) 3x² + 9 - 12x + x² = 0 4x² - 12x + 9 = 0 D = b² - 4ac = 144 - 16×9 = 0 x = -b/2a x = 12/8 x = 1,5
2) 5x² + 1 - 6x + 4x² = 0 9x² - 6x + 1 = 0 D = b² - 4ac = 36 - 36×1 = 0 x = -b/2a x = 6/18 x = 1/3
Пусть х (км/ч) - скорость течения, тогда (10+х) - скорость моторной лодки по течению, а (10-х) - скорость моторной лодки против течения. Составим уравнение.
39:(10+х)+28:(10-х)=7
39(10-х)+28(10+х)=7(10+х)(10-х)
390-39х+280+28х=7(100+10х-10х-х^2)
670-11х=700-х^2
7x^2-11х+670-700=0
7х^2-11х-30=0 -квадратное уравнение
Решаем квадратное уравнение.
D (Дискриминант уравнения) = b 2 - 4ac = 961
х1=(-b+√D)/2a=(11+31)/(2*7)=42/14=3
х2=(-b-√D)/2a=(11-31)/(2*7)=-20/14=-10/7
Скорость течения: 3 км/ч
Проверка:
39:(10+3)+28:(10-3)=7
39:13+28:7=7
3+4=7
7=7
ответ: скорость течения реки 3 км/ч