a) они параллельны
б) пересекаются
Объяснение:
y = kx + l
параллельная: y = kx + a, при a не равно l
т.е.:
y=8x+2 || y=8x-1 (https://math.semestr.ru/math/plot.php - там очень удобно работать с графиками)
и так с остальными
пересекает, если имеет общие точки. значит, при определенном значении y и x, функции должны быть равны
при этом они не должны быть параллельны
т.е. y = kx + l никогда не будет равно y = kx + a, если a не равно l
иначе мы придем к равенству l = a, а оно не должно выполняться вообще
следовательно, k первой и второй функции должны отличаться, т.к. в ином случае они параллельны
итого выходит так:
y = kx + b U y = ax + b, где b - любое число, а - число, не равное k
(отсюда же можно сделать вывод, почему некоторые графики параллельны - если они не могут быть равны, значит не имеют точек пересечения, а это определение параллельности)
совпадает, если графики равны. т.е. k1=k2, l1=l2, если это линейная функция и т.д.
Все очень просто.
Корень из дроби, которая меньше 1, но больше 0, даст нам положительное число, которое будет в итоге больше.
Т.е. корень из 0.25 равно 0.5. 0.5 больше 0.25
К чему бы это? К тому, что x,y,z,t - все они являются числами от числа, стремящегося к нулю, до числа, стремящегося к 1. Проще говоря, правильная дробь, т.к. отрицательные числа нам запрещены и 0 тоже.
Например, возьмем при y = 0.19, x = 0.8. Корни из них равны ~0.43 и ~0.89. Их сумма однозначно больше единицы.
0.19+0.8+z+t=1. Уравнение имеет корни, даже если z и t должны быть положительными.
Одно из выражений мы смогли доказать, поэтому остальные доказывать не нужно.
Поделитесь своими знаниями, ответьте на вопрос:
1)если sin x> =0, то isin xi= sin x, тогда имеем sin x = sin x + 2 cos x
2 cos x = 0
cos x = 0
x= pi/2 +pi*k
учитывая, что sin x> =0 получаем x= pi/2 +2*pi*k .
2) если sin x< 0, то isin xi=- sin x, тогда имеем -sin x = sin x + 2 cos x
2 sin x+2 cos x =0
sin x+ cos x =0 i : cos x
tg x= -1
x= - pi/4 +pi*n
учитывая, что sin x< 0 получаем x= -pi/4 +2*pi*n .
ответ: x= pi/2 +2*pi*k , x= -pi/4 +2*pi*n , k,n- целые числа.