is0019
?>

Реши неравенство 5g^2−5g(g+5)≥100. Выбери правильный вариант ответа: g≤-6 g≥-6 g≤-4 g≥-4 g≤6 3) Реши неравенство x+3\2<10−x\3 . Выбери правильный вариант ответа: 1) x<2, 2 2) x>2, 2 3) x>5 4) x<−2, 2 5) x<6 6) x<11 4) Реши неравенство 11−4x>5−6x. 5) Найди область определения выражения f(x)=√x^2−3x+2. Выбери верный вариант ответа: 1) другой ответ 2) 1≤x≤2 3) x<1, x>2 4) 1 5) x≤1, x≥2 6)Найди область определения выражения f(d)=√10\12d−d2−20. Выбери правильный вариант ответа: 1)d<2, d>10 2)2 3)d≤2, d≥10 4)2≤d≤10 7) Установи, при каких значениях u имеет смысл выражение √1\2u2−7u+6. Выбери правильный вариант ответа: 1) u<1, 5, u>2 2) u≤1, 5, u≥2 3) u≥2 4) u>2 5) u<1, 5 6) ∅ 7) другой ответ 8) 1, 5≤u≤2 9) 1, 5 8) При каких значениях переменной z имеет смысл выражение √(z−6)(z+6)?

Алгебра

Ответы

olimov9

1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.

D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.

2) Найди корни квадратного уравнения x²+7x+12=0.

По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.

3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.

Рациональным будет метод введения новой переменной.

Пусть 5x−15 = t, тогда имеем:

2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1

t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.

Возвращаемся к замене:

5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.

5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.

ответ: 3,4; 3,3.

4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.

x−2,1 = 0 или x−31 = 0.

х₁ = 2,1            х₂ = 31.

ответ: 2,1; 31.

5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).

Полученная дробь: (х - 4)/(х + 6).

6)Сократи дробь (5x²−32x+12)/(x³−216).

5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.

x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4

Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =

= (5x - 2)/(x² + 6x + 36).

7) Разложи на множители квадратный трехчлен  x² + 8x + 15.

x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.

имеем, x² + 8x + 15 = (x + 3)(x + 5).

Dmitrii_Shamilevich2019
1.
(m+n)²=m²+2mn+n²
(a-5)²=a²-10a+25
(2-3y)²=4-12y+9y²
(b+2)(b-2)=b²-4
(4-5a)(5a+4)=(4-5a)(4+5a)=16-25a²
(7x²-6y)(7x²+6y)=49x⁴-36y²

2/
a²-9=(a-3)(a+3)
x²-6x+9=(x-3)²
16-9y²=(4-3y)(4+3y)
4x²+4x+1=(2x+1)²
36m⁴-25n²=(6m-5n)(6m+5n)
a⁴-16=(a²+4)(a²+4)

3.
(3x-1)(3x+1)+(4x+1)²=(5x+6)²
9x²-1+16x²+8x+1=25x²+60x+36
9x²+16x²-25x²+8x-60x-36=0
- 52x=36
x= - 36/52= - 9/13

4.

х (см)-сторона 1-го квадрата
х+1 (см)-сторона 2-го квадр.
S2 больше S1 на 7 см²

(х+1)²-х²=7
х²+2х+1-х²=7
2х=7-1
х=6:2
х=3(см)-сторона 1-го квадрата

5.
61²-60²=(61-60)(61+60)=1*121=121
73²+2*73*27+27²=(73+27)²=100²=10000
113²-2*113*13+13²=(113-13)²=100²=10000

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Реши неравенство 5g^2−5g(g+5)≥100. Выбери правильный вариант ответа: g≤-6 g≥-6 g≤-4 g≥-4 g≤6 3) Реши неравенство x+3\2<10−x\3 . Выбери правильный вариант ответа: 1) x<2, 2 2) x>2, 2 3) x>5 4) x<−2, 2 5) x<6 6) x<11 4) Реши неравенство 11−4x>5−6x. 5) Найди область определения выражения f(x)=√x^2−3x+2. Выбери верный вариант ответа: 1) другой ответ 2) 1≤x≤2 3) x<1, x>2 4) 1 5) x≤1, x≥2 6)Найди область определения выражения f(d)=√10\12d−d2−20. Выбери правильный вариант ответа: 1)d<2, d>10 2)2 3)d≤2, d≥10 4)2≤d≤10 7) Установи, при каких значениях u имеет смысл выражение √1\2u2−7u+6. Выбери правильный вариант ответа: 1) u<1, 5, u>2 2) u≤1, 5, u≥2 3) u≥2 4) u>2 5) u<1, 5 6) ∅ 7) другой ответ 8) 1, 5≤u≤2 9) 1, 5 8) При каких значениях переменной z имеет смысл выражение √(z−6)(z+6)?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Natella-874535
astenSA
moskwa999
svetlana-sharapova-762621
madina27821667
Кристина910
vdnh451
westgti77105
annasolod
tigo1
s777tver109
Lapushkin1988
maltes
чухловина209
Бондарев-Исаханян