Нет точки максимума
Объяснение:
Рассмотрим функцию
Так как в составе функции участвует квадратный корень, то область определений функции: x≥0, то есть D(y)=[0; +∞).
Чтобы найти экстремумы (локальные минимумы и максимумы) будем исследовать функцию с производной функции. Вычислим производную функции:
Так как , то
для любого x∈D(y). Это означает, что данная функция монотонно возрастает в D(y). Отсюда следует, что у функции нет точки максимума.
Так как функция монотонно возрастает в D(y), то минимальное значение в D(y)=[0; +∞) принимает при x=0: y(0)=2.
Поделитесь своими знаниями, ответьте на вопрос:
3.У выражение и найдите его значение при y = 2. (2у-1)(4у2 + 2у+1)-у(у-1)(у+1