y = f(x)
Сначала осознаем как должен выглядеть график (рис. 1):
Рисуем прямые x = -5 и x = 6, график не должен выходить за эти прямые (обозначили область определения).Рисуем прямые y = -4 и y = 3, график не должен выходить за эти прямые (обозначили множество значений).На оси Ox отмечаем интервал (1;4), график функции должен проходить через ось Ox в этом интервале (обозначили промежуток нулевого значения).Теперь построим график функции (рис. 2):
Для простоты построим график ломанной (она непрерывна и просто изображается).
Функция убывает на всей области определения, поэтому для самого меньшего х из области определения , должно быть самое наибольшее y из множества значений (потом это значение уже не реализуется т.к. функция убывает, тогда множество значений будет другим). Итог: вершина ломанной в точке (-5;3).Пусть следующая вершина в точке (0;2).Ноль функции, он же пусть будет и вершиной ломанной, в точке (3;0) т.к. 3 ∈ (1;4).Последняя вершина в точке (6;-4), y= -4 для нужного множества значений.Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство sin(3pi/2 - x)<=корень из 2/2
х = 18, у = -6.
Объяснение:
Так как графики функций пересекаются, то в точке их пересечения координаты одного графика равны координатам другого.
1) Приравняем у1 и у2:
-х/3 = 12 - х, откуда находим координату х:
-х = 36 - 3х,
2х = 36,
х = 18.
2) По у1 находим координату у при х = 18:
у 1 = - 18/3 = - 6.
3) По у2 делаем проверку (при х = 18 он должен быть = - 6):
у 2 = 12 - 18 = - 6.
Совпало с п.3 - значит, расчеты координат точки пересечения выполнены верно.
ответ: координаты точки пересечения:
х = 18, у = -6.