Larisa-0888716
?>

Какова область определения функции y=12/x?​

Алгебра

Ответы

svetkinm158

Поскольку это обратная пропорциональность, то область определения - все значения, кроме x=0 (т.к. дробь)

(-∞;0)u(0,∞)

demakova1969
1) 90 - 1/3x > 91 -1/3x > 91 - 90 -1/3x > 1 1/3x < -1 x < -3 т.к. -3 не входит в решение неравенства, то x = -4 - наибольшее целое его решение. 2) 18 1/9  ≥ 0,2x + 18 18 1/9 - 18  ≥ 0,2x 1/9  ≥ 0,2x 5/9  ≥ x x  ≤ 5/9 0 < 5/9 < 1, значит, x = 0 - наибольшее целое решение неравенства. 3) 30,08 < -8/9x - 1,92 30,08 + 1,92 < -8/9x 32 < -8/9x -4 > 1/9x x < -36 т.к. x = -36 не входит, то x = -37 является наибольшим целым решением неравенства. 
juli19657
Дерево возможных вариантов см. на рисунке. Отсюда наглядно виды все решения.

а) Сколько имеется различных освещения коридора, включая случай когда все лампочки не горят. Как видим, каждая лампочка имеет два состояния (горит/не горит). Т.к. лампочек три, то всего вариантов будет 2³ = 8. Все 8 вариантов представлены на рисунке.

б) Сколько имеется различных освещения, если известно что лампочки №1 и №2 горят или не горят одновременно? Когда лампочки №1 и №2 горят, то лампочка №3 либо горит, либо не горит (2 варианта). Точно также, когда лампочки №1 и №2 не горят, то лампочка №3 тоже либо горит, либо не горит (2 варианта). Итого, 4 варианта. Проверяем по рисунку.

в) Сколько имеется различных освещения, если известно что при горящей лампочке  №3 лампочка №2 не горит?
По рисунку считаем варианты - их 6. Когда лампочка №3 горит, то лампочка №2 не горит (по условию), а у лампочки №1 есть 2 варианта - горит/не горит. Когда лампочка №3 не горит, то вариантов у оставшихся лампочек будет 2² = 4. Вот и получается 6 вариантов.

г) сколько имеется различных освещения коридора когда горит большинство лампочек? Т.е. нам надо сосчитать случаи, когда одновременно горят 2 и более лампочек. По рисунку высчитываем, что есть 4 варианта. Или считаем число сочетаний двух лампочек из трёх, плюс число сочетаний три лампочки из трёх.
C_3^2 = \frac{3!}{2!*1!} = \frac{1*2*3}{1*2*1} = 3 \\ \\ C_3^3 = \frac{3!}{3!*0!} = \frac{1*2*3}{1*2*3*1} = 1
Итак, 4 варианта.
Вкоридоре 3 лампочки а) сколько имеется различных освещения коридора,включа случай когда все лампочк

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Какова область определения функции y=12/x?​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Эрендженова
ГазалиеваКозак
Заполните пропуски -=4x^2-12xy+
jamaltreid
eugene869154
troian07
mbudilina
aleksvasin
Оксана759
mado191065
alukyanov
irinaastapova2011
zsv073625
papanovar
minasov19
gub191025