krispel9
?>

Запиши уравнение, если известно, что x1, 2=−13±√169+2

Алгебра

Ответы

printdecor
√4.5 * √72 = √4.5 *√ 9*8 = √4.5 * 3 * √8 = √4.5 * 3 * √4*2 = √4.5 * 3 * 2 * √2 = √4.5 * 6 * √2 = √4.5*√2 * 6 = √9 * 6 = 3*6 = 18
т.к выглядит по татарски , напишу письменно
корень их 4,5 умножим на корень из 72 , разложим 72 на множители- 9 и 8( что бы корень исчез)  , корень из 9 - это 3 , следовательно получаем:
корень из √4.5 * 3 * √8 . 8 тоже можно разложить на множители - это 4*2
а корень из 4 - это 2,
получаем корень из 4,5, умноженное на 3, умноженное на на 2  и ещё раз умноженное на корень из двух
3 и 2 перемножаем , получаем 6.
и теперь у нас остаётся корень из 4,5 и корень из двух
их мы тоже перемножим , получим корень из 9
а корень из 9 - это 3
получается что 6*3=18
ОТВЕТ : 18
спрашивай, если что не понятно 
Rufilya-Belov

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Запиши уравнение, если известно, что x1, 2=−13±√169+2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

salahovta
Sergei Gaishun
ivanjeka87
Irina1435
AverinAA6077
nst-33764
shyroshka836103
aromastil88
rusmoney92
zubritskiy550
titovass9
ok-49566
MikhailSvetlana
Сорокина
Panfilov_Anna