msangelika1010
?>

Запишите в виде многочлена стандартного вида:а) 2а(3а^2-5b^2)б) (2а-3b^2)(4a^2+6ab^2+9b^4)​

Алгебра

Ответы

zotovinbox468
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
makarov021106
ответ:
ответ: один ученик побывал и в кино, и в театре, и в цирке.
Пошаговое объяснение:
РЕШЕНИЕ. Пусть х – количество учащихся, которые побывали и в кино, и в театре, и в цирке. Тогда (6-х) –количество учащихся, побывавших и в кино, и в театре; (10-х) - количество учащихся, побывавших и в кино, и в цирке; (4-х) - количество учащихся, побывавших и в цирке, и в театре. Известно, что в кино побывало 25 человек, найдём, сколько ребят посетило только кино:
25 – (6 – х) – (10 – х) –х = 25-6+х-10 +х-х=9+х
Аналогично найдём, сколько ребят посетило только театр:
11 -(6 – х) – (4 – х) – х =11-6+х-4+х-х=1+х
Аналогично найдём, сколько ребят посетило только цирк:
17 - (10 – х) - (4 – х) – х = 17-10+х – 4 +х –х=3+х
Т.к. двое учеников не посещали никакие увеселительные заведения, то количество активных ребят равно 36 - 2 = 34.
Составляем уравнение:
Х+4-х+10-х+6-х+9+х+1+х+3+х = 34
Х+33=34
Х=1 (уч) – посетил и кино, и театр, и цирк.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Запишите в виде многочлена стандартного вида:а) 2а(3а^2-5b^2)б) (2а-3b^2)(4a^2+6ab^2+9b^4)​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

arch5050
Егорова
Shcherbinin KOLIChEVA
marketing
galinazajceva781
Pavel1545
milo4ka26
MNA888
Владимирович
e90969692976
IrinaSolodukhina1495
jardi
baumanec199613
volodinnikolay19
1)3x^2-4x-4=0 2)(x^2+x+1)(x^2 +x+4)=40
pravovoimeridian