Диана820
?>

Sin2x если sinx=-2/5 вычислить пользуясь формулой двойного аргумента

Алгебра

Ответы

Valeria123864531
1)    ;
sin2x - (1-sin²x)  =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.

2)   ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0  * * *cos2x = ± 1 ≠0→ ОДЗ * * * 
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .

3)   ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.

4)  ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ;  * * * α = 3x  * * *
cos3x = 2cos²3x ; 
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
Джулия
2x²-4х+b=0
Это решается по дискриминанту 
вот формула D = b² - 4ac
где а - это то число где x²
где b - это то  число где x
где c - это то  число где нет x
Подставляем значения под формулу
D = 4² - 4 * 2 * b = 16 - 8b = 8b
дальше находим x1 и x2
по формуле 
х1= -b + квадратный корень из дискриминанта
                                  делим на 2а 
х2= -b - квадратный корень из дискриминанта
                                  делим на 2а 
Так же :
если дискриминант отрицательный то корней нет
если дискриминант равен нулю то корень только один
если дискриминант больше нуля то уравнение имеет два корня 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Sin2x если sinx=-2/5 вычислить пользуясь формулой двойного аргумента
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Yevgenevich775
Михаил1121
Chopper-hinter25
akrivoz
Adabir20156806
Белов_Лукина1339
Marinanagornyak
mashuska
pokupatel688
ukkavtodor6
supply1590
Mexx9050
joini09
ann-perminova2008
sv-opt0076