Решить систему линейных уравнений методом подстановки и методом сложения:
{
y
+
2
x
=
1
y
−
x
=
3
Решение методом подстановки.
{
y
+
2
x
=
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
(
−
2
x
+
1
)
−
x
=
3
⇒
{
y
=
−
2
x
+
1
−
3
x
−
2
=
0
⇒
{
y
=
−
2
x
+
1
x
=
−
2
3
⇒
{
y
=
7
3
x
=
−
2
3
y
=
2
1
3
;
x
=
−
2
3
Решение методом сложения.
{
y
+
2
x
=
1
y
−
x
=
3
Вычитаем уравнения:
−
{
y
+
2
x
=
1
y
−
x
=
3
(
y
+
2
x
)
−
(
y
−
x
)
=
1
−
3
3
x
=
−
2
x
=
−
2
3
Подставиим найденную переменную в первое уравнение:
(
−
2
3
)
+
2
x
=
1
y
=
7
3
y
=
2
1
3
;
x
=
−
2
3
Объяснение:
Alyona1692
19.01.2021
7х-2у=0 запишем как уранение прямой с угловым коэффициентом k: y=3,5x Прямая проходит через точки (0;0) и (2;7)
3х+6у=24 запишем в виде уравнения в отрезках. Для этого делим каждое слагаемое на 24. (х/8)+(у/4)=1 Легко построить прямую. Она отсекает на осях координат отрезки: на оси ох длиной 8; на оси оу длиной 4. Прямая проходит через точки (8;0) и (0;4). См. графическое решение в приложении.
Решение сложения Умножаем первое уравнение на 3: 21х-6у=0 3х+6у=24 Складываем 24х=24 ⇒ х=1 у=3,5х=3,5·1=3,5
О т в е т. (1;3,5)
Berezovskaya
19.01.2021
Пусть знаменатель дроби х, числитель (х-7). Дробь (х-7)/х. Если числитель этой дроби уменьшить на 1 , а знаменатель увеличить на 4, то получим дробь ((х-7)-1)/(х+4)=(х-8)/(х+4). По условию дробь уменьшится на 1/6. Уравнение (х-7)/х - (1/6)=(х-8)/(х+4).
Умножаем на 6х(х+4)≠0. 6(х+4)(х-7)-х(х+4)=6х(х-8); х²-26х+168=0 D=(-26)²-4·168=676-672=4. x=(26-2)/2=12 или х=(26+2)/2=14
х-7=12-7=5 или х-7=14-7=7 дробь 5/12 7/14 (5-1)/(12+4)=4/16=1/4- (7-1)/(14+4)=6/18=1/3 новая дробь (5/12)-(1/6)=(5/12)-(2/12)=3/12=1/4 (7/14)-(1/6)=(21/42)- (7/42)=14/42= =1/3
О т в е т. 5/12 или 7/14.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решите графически систему уравнение у+2х=1 у-х=3 решите
Решить систему линейных уравнений методом подстановки и методом сложения:
{
y
+
2
x
=
1
y
−
x
=
3
Решение методом подстановки.
{
y
+
2
x
=
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
y
−
x
=
3
⇒
{
y
=
−
2
x
+
1
(
−
2
x
+
1
)
−
x
=
3
⇒
{
y
=
−
2
x
+
1
−
3
x
−
2
=
0
⇒
{
y
=
−
2
x
+
1
x
=
−
2
3
⇒
{
y
=
7
3
x
=
−
2
3
y
=
2
1
3
;
x
=
−
2
3
Решение методом сложения.
{
y
+
2
x
=
1
y
−
x
=
3
Вычитаем уравнения:
−
{
y
+
2
x
=
1
y
−
x
=
3
(
y
+
2
x
)
−
(
y
−
x
)
=
1
−
3
3
x
=
−
2
x
=
−
2
3
Подставиим найденную переменную в первое уравнение:
(
−
2
3
)
+
2
x
=
1
y
=
7
3
y
=
2
1
3
;
x
=
−
2
3
Объяснение: