AleksandrovnaIgor
?>

Дискретная случайная величина Х может принимает значение х1=4 с вероятностью p1=0, х2=6 с вероятностью p2=0, 3 и х3 с вероятностью р3. Если М(Х)=8, то определите значения х3 и р3.​

Алгебра

Ответы

aleksey7800
Есть несколько путей - например, с выделением полного квадрата или через дискриминант.

1. Выделение полного квадрата
Прибавим и вычтем 4:
x^2 - 4x + 4 - 4 - 30 = 0
Заметим, что x^2 - 4x + 4 = (x - 2)^2, приведем подобные:
(x - 2)^2 - 34 = 0
(x - 2)^2 = 34
Извлекаем корень (я его обозначаю sqrt):
x - 2 = +- sqrt(34)
x = 2 +- sqrt(34)

2. Дискриминант.
Если есть уравнение ax^2 + bx + c = 0, то дискриминант вычисляется по формуле D = b^2 - 4ac, и решение (если D>0) имеет вид x = (-b +- sqrt(D))/2a.
a = 1, b = -4, c = -30.
D = 16 + 120 = 136 = 4 * 34
x = (4 +- sqrt(4 * 34))/2
Можно вынести 4 из под знака корня и сократить на 2:
x = (4 +- 2sqrt(34))/2 = 2 +- sqrt(34)

3. Дискриминант/4
Если уравнение имеет вид ax^2 + 2bx + c = 0, то можно вычислить D* = D/4 = b^2 - ac, решение будет выглядеть так: x = (-b +- sqrt(D*))/a
D* = 4 + 30 = 34
x = (2 +- sqrt(34))/1 = 2 +- sqrt(34)
Последний удобен, если старший коэффициент равен 1 или коэффициент при x чётный.

ответ. x = 2 +- sqrt(34).
ruslanriad10
1)  a5  =  2*5  - 5²  = 10 - 25  = -15  (ответ 1)      ) 2)  а6 = 2 + (6 - 1)*(-3)  = 2 - 15 = -13  (ответ 3)      ) 3)  d = a6 -  a2  / 4  =  14-4  /2 = 2,5    (ответ 1)      ) 4) s10 =  ( 2*2 + 9*4) / 2  *  10  =  200    (ответ 4)      ) повыш.уровень. 1)  прогрессия убывающая,  с разностью d=  - 0,2   первый член равен 3,    посчитаем, каким по счету будет член, равный нулю. обозначим его аn,  аn=0.       3 : 0,2 = 15,    тогда по формуле    аn  = а1 + (n - 1)*d    найдем n: 0 = 3 +  15*(- 0,2) 0 = 3 +  (16  - 1)*(- 0,2) значит  а16 равен нулю, значит в последовательности 15 положительных членов. 2)  а3 = 10  =>   10 = a1 + 2d              а7 = 10  =>   40 = a1 + 6d          получили систему.       из второго вычтем первое уравнение,  получим:                           30  = 4d    =>     d = 7,5                             a1 = 10 -  2d  =    10 - 15  =  -5         тогда      а5=  a1 + 4d    =   -5 + 4*7,5 = 25 3)   если рассматривать множество натуральных чисел как арифм.прогрессию с первым членом a1 = 1  и разностью  d = 1,  то   сводится к нахождению разности  s100  -  s39, s100  =  (1+100) /2  * 100  = 5050 s39  =  (1+39) /2  * 39  = 780     s100  -  s39 = 5050 - 780  = 4270 4)  d = а8 - а4 / 4  =  20 - 8  /4 = 12/4    =  3 тогда по формуле  аn  = а1 + (n - 1)*d  найдем чему равен первый член:   а4  = а1 + (4 - 1)*d   8 =  а1  + 3*3     а1  =  -1     тогда 16-й  член будет равен:   а16  = а1 + (16 - 1)*d  = -1 + 15*3 = 44 т.о. действительно такая ар.прогрессия существует и формула общего члена такая:     аn  = -1 + 3(n - 1) =  -1 + 3n - 3  =   3n - 4 аn  =  3n - 4 5)  аn  =  3n - 1       а1  =  3 - 1  = 2       а2  =  6 - 1  = 5       d = а2 - а1  = 5-2 = 3 s  = s54  -  s13  = 4401  -  260  =  4141         s54  = (2*2 + 53*3) /2  *  54  = (4 + 159) /2  *  54  = 163 * 54 /2    =  4401         s13  = (2*2 + 12*3) /2  *  13  = (4 + 36) /2  *  13  = 20 *  13  = 260   ответ:   сумма членов прогрессии  с 14  по 54  включительно равна  4141.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дискретная случайная величина Х может принимает значение х1=4 с вероятностью p1=0, х2=6 с вероятностью p2=0, 3 и х3 с вероятностью р3. Если М(Х)=8, то определите значения х3 и р3.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

PopovViktorovna
ivan-chay19
ЭдуардовнаКлючников1361
Dmitriy2211104
ilyanedelev
Sharap
Yevgenii1423
zu87zu87
ilonchick679
optikmir
re-art
turovskaya69
Татьяна1045
alexandr25901
Оздоевский