gaina6678
?>

Найдите значение выражения при c=7.Заранее

Алгебра

Ответы

stolle16

Фото

Объяснение:


Найдите значение выражения при c=7.Заранее
sveta300856729

ответ: Наверное так:)


Найдите значение выражения при c=7.Заранее
tefdst

Объяснение:

1. Пусть на одном складе было х тонн картошки.

2. Тогда на другом складе было 2,5х тонн картошки.

3. На одном складе стало (х + 72) тонн картошки.

4. На другом складе стало (2,5х + 30) тонн картошки.

5. Составим уравнение и узнаем сколько картошки было на втором складе первоначально, если в итоге на обоих складах картошки стало поровну.

х + 72 = 2,5х + 30;

72 - 30 = 2,5х - х;

1,5х = 42;

х = 42 : 1,5;

х = 28 тонн - картошки на одном складе.

6. 28 * 2,5 = 70 тонн - картошки на другом складе

ответ: На одном складе было первоначально 28 тонн картошки, а на другом 70 тонн.

msk-academ

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите значение выражения при c=7.Заранее
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Владимир
etv771370
suny84
Powerbasses5521
Irina
Николаевич-Анатольевич599
elenalukanova
panstel
Елена
Aleksandrovich1669
anazarov80
turoverova5
shhelina
BelozerovaGeller648
Египтян2004